Cartan's Identity
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathematics ...
−1 (anti)derivation on the exterior algebra of
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, ...
s on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product \iota_X \omega is sometimes written as X \mathbin \omega.


Definition

The interior product is defined to be the
contraction Contraction may refer to: Linguistics * Contraction (grammar), a shortened word * Poetic contraction, omission of letters for poetic reasons * Elision, omission of sounds ** Syncope (phonology), omission of sounds in a word * Synalepha, merged ...
of a
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, ...
with a vector field. Thus if X is a vector field on the
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
M, then \iota_X : \Omega^p(M) \to \Omega^(M) is the map which sends a p-form \omega to the (p - 1)-form \iota_X \omega defined by the property that (\iota_X\omega)\left(X_1, \ldots, X_\right) = \omega\left(X, X_1, \ldots, X_\right) for any vector fields X_1, \ldots, X_. The interior product is the unique
antiderivation In mathematics, a derivation is a function on an algebra which generalizes certain features of the derivative operator. Specifically, given an algebra ''A'' over a ring or a field ''K'', a ''K''-derivation is a ''K''-linear map that satisfies Le ...
of degree −1 on the exterior algebra such that on one-forms \alpha \displaystyle\iota_X \alpha = \alpha(X) = \langle \alpha, X \rangle, where \langle \,\cdot, \cdot\, \rangle is the duality pairing between \alpha and the vector X. Explicitly, if \beta is a p-form and \gamma is a q-form, then \iota_X(\beta \wedge \gamma) = \left(\iota_X\beta\right) \wedge \gamma + (-1)^p \beta \wedge \left(\iota_X\gamma\right). The above relation says that the interior product obeys a graded
Leibniz rule Leibniz's rule (named after Gottfried Wilhelm Leibniz) may refer to one of the following: * Product rule in differential calculus * General Leibniz rule, a generalization of the product rule * Leibniz integral rule * The alternating series test, al ...
. An operation satisfying linearity and a Leibniz rule is called a derivation.


Properties

If in local coordinates (x_1,...,x_n) the vector field X is described by functions f_1,...,f_n, then the interior product is given by \iota_X (dx_1 \wedge ...\wedge dx_n) = \sum_^(-1)^f_r dx_1 \wedge ...\wedge \widehat \wedge ... \wedge dx_n, where dx_1\wedge ...\wedge \widehat \wedge ... \wedge dx_n is the form obtained by omitting dx_r from dx_1 \wedge ...\wedge dx_n. By antisymmetry of forms, \iota_X \iota_Y \omega = - \iota_Y \iota_X \omega, and so \iota_X \circ \iota_X = 0. This may be compared to the
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
d, which has the property d \circ d = 0. The interior product relates the
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
and Lie derivative of differential forms by the Cartan formula (also known as the Cartan identity, Cartan homotopy formula or Cartan magic formula): \mathcal L_X\omega = d(\iota_X \omega) + \iota_X d\omega = \left\ \omega. This identity defines a duality between the exterior and interior derivatives. Cartan's identity is important in
symplectic geometry Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed differential form, closed, nondegenerate form, nondegenerate different ...
and general relativity: see moment map. The Cartan homotopy formula is named after Élie Cartan. The interior product with respect to the commutator of two vector fields X, Y satisfies the identity \iota_ = \left mathcal_X, \iota_Y\right


See also

* * *


Notes


References

* Theodore Frankel, ''The Geometry of Physics: An Introduction''; Cambridge University Press, 3rd ed. 2011 * Loring W. Tu, ''An Introduction to Manifolds'', 2e, Springer. 2011. {{DEFAULTSORT:Interior Product Differential forms Differential geometry Multilinear algebra