Cantitruncation
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, an omnitruncation is an operation applied to a
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
(or
honeycomb A honeycomb is a mass of hexagonal prismatic wax cells built by honey bees in their nests to contain their larvae and stores of honey and pollen. Beekeepers may remove the entire honeycomb to harvest honey. Honey bees consume about of honey t ...
) in a
Wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
that creates a maximum number of facets. It is represented in a
Coxeter–Dynkin diagram In geometry, a Coxeter–Dynkin diagram (or Coxeter diagram, Coxeter graph) is a graph with numerically labeled edges (called branches) representing the spatial relations between a collection of mirrors (or reflecting hyperplanes). It describes ...
with all nodes ringed. It is a ''shortcut'' term which has a different meaning in progressively-higher-dimensional polytopes: * Uniform polytope truncation operators ** For
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s: An ordinary truncation, t_\ = t\ = \. *** Coxeter-Dynkin diagram ** For
uniform polyhedra In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also f ...
(3-polytopes): A cantitruncation, t_\ = tr\. (Application of both
cantellation In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tiling ...
and truncation operations) *** Coxeter-Dynkin diagram: ** For uniform polychora: A runcicantitruncation, t_\. (Application of runcination, cantellation, and truncation operations) *** Coxeter-Dynkin diagram: , , ** For uniform polytera (5-polytopes): A steriruncicantitruncation, t0,1,2,3,4. t_\. (Application of sterication, runcination, cantellation, and truncation operations) *** Coxeter-Dynkin diagram: , , ** For uniform n-polytopes: t_\.


See also

*
Expansion (geometry) In geometry, expansion is a polytope operation where facets are separated and moved radially apart, and new facets are formed at separated elements ( vertices, edges, etc.). Equivalently this operation can be imagined by keeping facets in the ...
* Omnitruncated polyhedron


References

* Coxeter, H.S.M. '' Regular Polytopes'', (3rd edition, 1973), Dover edition, (pp.145-154 Chapter 8: Truncation, p 210 Expansion) * Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966


External links

* {{Polyhedron_operators Polyhedra Uniform polyhedra