Calcium Chloride Transformation
   HOME

TheInfoList



OR:

Calcium chloride (CaCl2) transformation is a laboratory technique in prokaryotic (bacterial)
cell biology Cell biology (also cellular biology or cytology) is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living and ...
. The addition of calcium chloride to a cell suspension promotes the binding of
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
DNA to lipopolysaccharides (LPS). Positively charged
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to ...
ions attract both the negatively charged DNA backbone and the negatively charged groups in the LPS inner core. The
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
DNA can then pass into the cell upon heat shock, where chilled cells (+4 degrees Celsius) are heated to a higher temperature (+42 degrees Celsius) for a short time.


History of bacterial transformation

Frederick Griffith published the first report of bacteria's potential for transformation in 1928. Griffith observed that mice did not succumb to the "rough" type of ''pneumococcus'' ('' Streptococcus pneumoniae''), referred to as nonvirulent, but did succumb to the "smooth" strain, which is referred to as virulent.  The smooth strain's virulence could be suppressed with heat-killing. However, when the nonvirulent rough strain was combined with the heat-killed smooth strain, the rough strain managed to pick up the smooth phenotype and thus become virulent. Griffith's research indicated that the change was brought on by a nonliving, heat-stable substance generated from the smooth strain. Later on, Oswald Avery, Colin MacLeod, and Maclyn McCarty identified this transformational substance as DNA in 1944.


Principle of calcium chloride transformation

Since DNA is a very hydrophilic molecule, it often cannot penetrate through the bacterial cell membrane. Therefore, it is necessary to make bacteria competent in order to internalize DNA. This may be accomplished by suspending bacteria in a solution with a high calcium concentration, which creates tiny holes in the bacterium's cells. Calcium suspension, along with the incubation of DNA together with competent cells on ice, followed by a brief heat shock, will directly lead extra-chromosomal DNA to forcedly enter the cell. According to previous research, the LPS receptor molecules on the competent cell surface bind to a bare DNA molecule. This binding occurs in view of the fact that the negatively charged DNA molecules and LPS form
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
es with the divalent cations. Due to its size, DNA cannot pass through the cell membrane on its own to reach the cytoplasm. The cell membrane of CaCl2-treated cells is severely depolarized during the heat shock stage, and as a result, the drop in membrane potential reduces the negative nature of the cell's internal potential, allowing negatively charged DNA to flow into the interior of the cell. Afterwards, the membrane potential can be raised back to its initial value by subsequent cold shock.


Competent cells

Competent cells are bacterial cells with re-designed cell walls that make it easier for foreign DNA to get through. Without particular chemical or electrical treatments to make them capable, the majority of cell types cannot successfully take up DNA, for that reason, treatment with calcium ions is the typical procedure for modifying bacteria to be permeable to DNA. In bacteria, competence is closely regulated, and different bacterial species have different competence-related characteristics. Although they share some similarity, the competence proteins generated by Gram-positive and Gram-negative bacteria are different.


Natural Competence

Natural competence In microbiology, genetics, cell biology, and molecular biology, competence is the ability of a cell to alter its genetics by taking up extracellular ("naked") DNA from its environment in the process called transformation. Competence may be diff ...
sums up in three methods where bacteria can acquire DNA from their surroundings:
conjugation Conjugation or conjugate may refer to: Linguistics * Grammatical conjugation, the modification of a verb from its basic form * Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics * Complex conjugation, the chang ...
,
transformation Transformation may refer to: Science and mathematics In biology and medicine * Metamorphosis, the biological process of changing physical form after birth or hatching * Malignant transformation, the process of cells becoming cancerous * Trans ...
, and transduction. As DNA is inserted into the cell during transformation, the recipient cells must be at certain physiological condition known as the competent state in order to take up transforming DNA. Once the DNA has entered the cell's cytoplasm, enzymes such as nuclease can break it down. In cases where the DNA is extremely similar to the cell's own genetic material, DNA-repairing-enzymes recombine it with the chromosome instead.


Artificial Competence

Evidently, a cell's genes do not include any information on artificial competence. This type of competence requires a laboratory process that creates conditions that do not often exist in nature so that cells can become permeable to DNA. Although the efficiency of transformation is often poor, this process is relatively simple and quick to be applied in bacterial genetic engineering. Mandel and Higa, who created an easy procedure based on soaking the cells in cold CaCl2, provided the basis for obtaining synthetic competent cells. Chemical transformation, such as calcium chloride transformation and electroporation are the most commonly used methods to transform bacterial cells, like
E.coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Esche ...
cells, with plasmid DNA.


Method for calcium chloride transformation

Calcium chloride treatment is generally used for the transformation of
E. coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escher ...
and other bacteria. It enhances
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
DNA incorporation by the bacterial cell, promoting
genetic transformation In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to ta ...
.
Plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
DNA can attach to LPS by being added to the cell solution together with CaCl2. Thus, when heat shock is applied, the negatively charged DNA backbone and LPS combine, allowing
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
DNA to enter the bacterial cell. The process is summarized in the following steps according to
The Undergraduate Journal of Experimental Microbiology and Immunology (UJEMI)
' protocol: # Prepare a bacterial culture in LB broth # Before starting the main procedure, use the required volume of the previously made culture to inoculate the required volume of fresh LB broth # Pellet the cells by centrifuging at 4°C at 4000 rpm for 10 minutes # Pour off the supernatant and resuspend cells in 20 mL ice-cold 0.1 M CaCl2, then leave immediately on ice for 20 minutes # Centrifuge as in ''step 3,'' a more diffused pellet will be obtained as an indication of competent cells # Resuspend in cold CaCl2 as in ''step 4'' # Pour off supernatant and resuspend cells in 5 mL ice-cold 0.1 M CaCl2 along with 15% glycerol to combine pellets # Transfer the suspensions to sterile thin glass tubes for effective heat shocks # Add the required mg amount of DNA in the suspension tubes, and immediately leave on ice # Place the tubes on a 42°C water bath for a 30 seconds and return immediately to ice for 2 minutes # Add 1 mL of LB or SOC medium # Transfer each tube to the required mL LB broth amount in a new flask # Incubate accordingly with shaking at 37°C at 200 rpm for 60 min, however, it is advised to leave it for 90 minutes in order to allow bacteria to recover # Plate 1:10 and 1:100 dilutions of the incubated cultures on selective/ screening plates (e.g. Ampicillin and/or X-gal) onto LB plates to which the antibiotics to be used for selection have been added # Incubate overnight at 37°C # Finally, observe isolated colonies on the plates


References


External links


Animation of Calcium chloride (CaCl2) transformation
*https://www.youtube.com/watch?v=7Ul9RVYG5CM&ab_channel=NewEnglandBiolabs {{DEFAULTSORT:Calcium Chloride Transformation Cell biology Molecular biology techniques