CERN Proton Synchrotron
   HOME

TheInfoList



OR:

The Proton Synchrotron (PS, sometimes also referred to as CPS) is a particle accelerator at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
. It is CERN's first
synchrotron A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed p ...
, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the
Super Proton Synchrotron The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, in circumference, straddling the border of France and Switzerland near Geneva, Switzerland. History The SPS was de ...
(SPS), and is currently part of the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundred ...
(LHC) accelerator complex. In addition to
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s, PS has accelerated alpha particles, oxygen and
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
nuclei, electrons,
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
s, and antiprotons. Today, the PS is part of CERN's accelerator complex. It accelerates protons for the LHC as well as a number of other experimental facilities at CERN. Using a negative hydrogen ion source, the ions are first accelerated to the energy of 160 MeV in the linear accelerator
Linac 4 The CERN hadron Linacs are Linear particle accelerator, linear accelerators that accelerate beams of hadrons from a standstill to be used by the larger circular accelerators at the facility. File:Linac1 facility at CERN.jpg, The first CERN Lina ...
. The hydrogen ion is then stripped of both electrons, leaving only the nucleus containing one proton, which is injected into the Proton Synchrotron Booster (PSB), which accelerates the protons to 2 GeV, followed by the PS, which pushes the beam to 25 GeV. The protons are then sent to the Super Proton Synchrotron, and accelerated to 450 GeV before they are injected into the LHC. The PS also accelerate heavy ions from the Low Energy Ion Ring (LEIR) at an energy of 72 MeV, for collisions in the LHC.


Background

The
synchrotron A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed p ...
(as in Proton ''Synchrotron'') is a type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed path. The
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
which bends the particle beam into its fixed path increases with time, and is ''synchronized'' to the increasing energy of the particles. As the particles travels around the fixed circular path they will oscillate around their equilibrium orbit, a phenomenon called
betatron oscillations A betatron is a type of cyclic particle accelerator. It is essentially a transformer with a torus-shaped vacuum tube as its secondary coil. An alternating current in the primary coils accelerates electrons in the vacuum around a circular path. Th ...
. In a conventional
synchrotron A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed p ...
the focusing of the circulating particles is achieved by weak focusing: the magnetic field that guides the particles around the fixed radius decreases slightly with radius, causing the orbits of the particles with slightly different positions to approximate each other. The amount of focusing in this way is not very great, and consequently the amplitudes of the
betatron oscillations A betatron is a type of cyclic particle accelerator. It is essentially a transformer with a torus-shaped vacuum tube as its secondary coil. An alternating current in the primary coils accelerates electrons in the vacuum around a circular path. Th ...
are large. Weak focusing requires a large vacuum chamber, and consequently big magnets. Most of the cost of a conventional synchrotron is the magnets. The PS was the first accelerator at CERN that made use of the alternating-gradient principle, also called strong focusing: quadrupole magnets are used to alternately focus horizontally and vertically many times around the circumference of the accelerator. The focusing of the particle can in theory become as strong as one wishes, and the amplitude of the betatron oscillations as small as desired. The net result is that you can reduce the cost of the magnets.


Operational history


Preliminary studies

When early in the 1950s the plans for a European laboratory of particle physics began to take shape, two different accelerator projects emerged. One machine was to be of standard type, easy and relatively fast and cheap to build: the
synchrocyclotron A synchrocyclotron is a special type of cyclotron, patented by Edwin McMillan in 1952, in which the frequency of the driving RF electric field is varied to compensate for relativistic effects as the particles' velocity begins to approach the spe ...
, achieving collisions at a center-of-mass energy of 600 MeV. The second device was a much more ambitious undertaking: an accelerator bigger than any other then existing, a
synchrotron A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed p ...
that could accelerate
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s up to an energy of 10 GeV – the PS. By May 1952 a design group was set up with Odd Dahl in charge. Other members of the group were among others Rolf Widerøe,
Frank Kenneth Goward Frank Kenneth Goward (1919 – March 1954) was an English scientist, specialized on aerial technologies and particle accelerator development.
, and John Adams. After a visit to the Cosmotron at Brookhaven National Laboratory in the US, the group learnt of a new idea for making cheaper and higher energy machines: alternating-gradient focusing. The idea was so attractive that the study of a 10 GeV synchrotron was dropped, and a study of a machine implementing the new idea initiated. Using this principle a 30 GeV accelerator could be built for the same cost as a 10 GeV accelerator using weak focusing. However, the stronger focusing the higher a precision of alignment of magnets required. This proved a serious problem in the construction of the accelerator. A second problem in the construction period was the machines behavior at an energy called "transition energy". At this point the relative increase in particle velocity changes from being greater to being smaller, causing the amplitude of the betatron oscillation to go to zero and loss of stability in the beam. This was solved by a ''jump'', or a sudden shift in the acceleration, in which pulsed quadruples made the protons traverse the transition energy level much faster. The PS was approved in October 1953, as a synchrotron of 25 GeV energy with a radius of 72 meter, and a budget of 120 million
Swiss franc The Swiss franc is the currency and legal tender of Switzerland and Liechtenstein. It is also legal tender in the Italian exclave of Campione d'Italia which is surrounded by Swiss territory. The Swiss National Bank (SNB) issues banknotes and the f ...
. The focusing strength chosen required a vacuum chamber of 12 cm width and 8 cm height, with magnets of about 4000 tonnes total mass. Dahl resigned as head of the project in October 1954 and was replaced by John Adams. By August 1959 the PS was ready for its first beam, and on 24 of November the machine reached a beam energy of 24 GeV.


1960–1976: Fixed-target and pre-accelerator to ISR

By the end of 1965 the PS was the center of a spider's web of beam lines: It supplied protons to the South Hall ( Meyrin site) where an internal target produced five secondary beams, serving a neutrino experiment and a
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
storage ring; the North Hall (Meyrin site) where two bubble chambers ( 80 cm hydrogen Saclay, heavy liquid CERN) were fed by an internal target; when the East Hall (Meyrin site) became available in 1963, protons from the PS hit an internal target producing a secondary beam filtered by electrostatic separators to the CERN 2 m bubble chamber and additional experiments. Together with the construction of the Intersecting Storage Rings (ISR), an improvement program for the PS was decided in 1965, also making space for the Gargamelle and the Big European Bubble Chamber experiments. The injection energy of the PS was raised by constructing an 800 MeV four ring booster — the Proton Synchrotron Booster (PSB) — which became operational in 1972.


1976–1991: Pre-accelerator to SPS/SpS and LEAR

In 1976 the
Super Proton Synchrotron The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, in circumference, straddling the border of France and Switzerland near Geneva, Switzerland. History The SPS was de ...
(SPS) became a new client of the PS. When SPS started to operate as a
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
antiproton collider — the
SpS SPS may refer to: Law and government * Agreement on the Application of Sanitary and Phytosanitary Measures of the WTO * NATO Science for Peace and Security * Single Payment Scheme, an EU agricultural subsidy * The Standard Procurement System, fo ...
— the PS had the double task of producing an intense 26 GeV/c proton beam for generating antiprotons at 3.5 GeV/c to be stored in the Antiproton Accumulator (AA), and then accelerating the antiprotons to 26 GeV/c for transfer to the SPS. The linear accelerator, now serving the PSB, was replaced in 1978 by
Linac 2 The CERN hadron Linacs are linear accelerators that accelerate beams of hadrons from a standstill to be used by the larger circular accelerators at the facility. File:Linac1 facility at CERN.jpg, The first CERN Linac, operating from 1958 until ...
, leading to an further increase in intensity. During this period acceleration of light ions entered the scene. Linac 1, which was replaced by Linac 2, was equipped to accelerate deuterons that were accelerated in the PS, and transferred to the ISR where they collided with protons or deuterons. When the Low Energy Antiproton Ring (LEAR), for deceleration and storage of antiprotons, became operational in 1982, PS resumed the new role of an antiproton decelerator. It decelerated antiprotons from the AA to 180 MeV, and injected them into LEAR. During this period the PS complex truly earned its nickname of "versatile particle factory". Up to 1996, PS would regularly accelerate ions for SPS fixed-target experiments, protons for the East Hall or antiproton production at AA, decelerate protons for LEAR, and later accelerate electrons and positrons for the Large Electron–Positron Collider (LEP).


1991–2001: Pre-accelerator to LEP

To provide leptons to LEP, three more machines had to been added to the PS complex: LIL-V electron linear accelerator, the LIL-W electron and positron linear accelerator, and the EPA (Electron-Positron Accumulator) storage ring. A modest amount of additional hardware had to be added to modify PS from a 25 GeV proton synchrotron to a 3.5 GeV lepton synchrotron. During this period the demand for heavier ions to be delivered as a primary beam to the SPS North experimental hall ( Prévessin site) also increased. Both
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
and oxygen ions were accelerated with great success.


2001–today: Pre-accelerator to LHC

After the end of operation as a LEP injector, the PS started a new period of operation in preparation as LHC injector and for new fixed-target experiments. New experiments started running in the East area, such as the
CLOUD experiment Cosmics Leaving Outdoor Droplets (CLOUD) is an experiment being run at CERN by a group of researchers led by Jasper Kirkby to investigate the microphysics between galactic cosmic rays (GCRs) and aerosols under controlled conditions. This is a f ...
. The PS complex was also remodeled when the AA area was replaced by the Antiproton Decelerator and its experimental area. By increasing the energy of the PSB and the Linac 2, the PS achieved record intensities in 2000 and 2001. During the whole of 2005 PS was shut down: radiation damage had caused aging of the main magnets. The magnets, originally estimated to have a lifetime of less than 10 years, had exceeded the estimate by more than a factor of four, and went through a refurbishment program. The tunnel was emptied, magnets refurbished, and the machine realigned. In 2008 PS started operating as a pre-accelerator to the LHC. Simultaneously the ion operation changed: LEAR was converted into a storage ring — the Low Energy Ion Ring (LEIR) — and the PSB stopped being an ion injector.


Construction and operation

The PS is built in a tunnel, in which temperature is controlled to ± 1°. Around the circumference, 628 meters, there are 100 magnet units of 4.4 m nominal length, 80 short straight sectors of 1.6 m, and 20 straight sectors of 3 m. Sixteen long straight sections are equipped with acceleration cavities, 20 short ones with quadruple correction lenses, and 20 short ones with sets of sextuple and octuplet lenses. Other straight sections are reserved for beam observation stations and injection devices, targets, and ejection magnets. As the alignment of the magnets is of paramount importance, the units are mounted on a free floating ring of concrete, 200 meters in diameter. As a further precaution, the concrete ring has steel pipes cast in it, where water passes through the ring to keep a constant temperature in the magnets.


Findings and discoveries

Using a neutrino beam produced by a proton beam from PS, the Gargamelle experiment discovered neutral currents in 1973.


References


External links

* {{CERN Accelerator physics Buildings and structures in the canton of Geneva CERN accelerators Particle accelerators Particle physics facilities CERN facilities