Code-division multiple access (CDMA) is a
channel access method
In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical med ...
used by various
radio
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmit ...
communication technologies. CDMA is an example of
multiple access
In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical med ...
, where several transmitters can send information simultaneously over a single communication channel. This allows several users to share a band of frequencies (see
bandwidth
Bandwidth commonly refers to:
* Bandwidth (signal processing) or ''analog bandwidth'', ''frequency bandwidth'', or ''radio bandwidth'', a measure of the width of a frequency range
* Bandwidth (computing), the rate of data transfer, bit rate or thr ...
). To permit this without undue interference between the users, CDMA employs
spread spectrum
In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal (e.g., an electrical, electromagnetic, or acoustic signal) generated with a particular bandwidth is deliberately spread in the frequency dom ...
technology and a special coding scheme (where each transmitter is assigned a code).
CDMA optimizes the use of available bandwidth as it transmits over the entire frequency range and does not limit the user's frequency range.
It is used as the access method in many
mobile phone standards
This is a comparison of standards of mobile phones. A new generation of cellular standards has appeared approximately every tenth year since 1G systems were introduced in 1979 and the early to mid-1980s.
Issues
Global System for Mobile Communi ...
.
IS-95
Interim Standard 95 (IS-95) was the first ever CDMA-based digital cellular technology. It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The ...
, also called "cdmaOne", and its
3G evolution
CDMA2000
CDMA2000 (also known as C2K or IMT Multi‑Carrier (IMT‑MC)) is a family of 3G mobile technology standards for sending voice, data, and signaling data between mobile phones and cell sites. It is developed by 3GPP2 as a backwards-compatible ...
, are often simply referred to as "CDMA", but
UMTS
The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP (3rd Generation Partnership Project), UMTS is a component of the Inte ...
, the 3G standard used by
GSM
The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation ( 2G) digital cellular networks used by mobile devices such ...
carriers, also uses "wideband CDMA", or W-CDMA, as well as TD-CDMA and TD-SCDMA, as its radio technologies.
It can be also used as a channel or medium access technology, like
ALOHA
''Aloha'' ( , ) is the Hawaiian language, Hawaiian word for love, affection, peace, compassion and mercy, that is commonly used as a simple greeting but has a deeper cultural and spiritual significance to native Hawaiians, for whom the term is u ...
for example or as a permanent pilot/signalling channel to allow users to synchronize their local oscillators to a common system frequency, thereby also estimating the channel parameters permanently.
In these schemes, the message is modulated on a longer spreading sequence, consisting of several chips (0es and 1es). Due to their very advantageous auto- and crosscorrelation characteristics, these spreading sequences have also been used for radar applications for many decades, where they are called
Barker code
In telecommunication technology, a Barker code, or Barker sequence, is a finite sequence of digital values with the ideal autocorrelation property. It is used as a synchronising pattern between sender and receiver.
Explanation
Binary digits ha ...
s (with a very short sequence length of typically 8 to 32).
For space-based communication applications, CDMA has been used for many decades due to the large path loss and Doppler shift caused by satellite motion. CDMA is often used with
binary phase-shift keying (BPSK) in its simplest form, but can be combined with any modulation scheme like (in advanced cases)
quadrature amplitude modulation
Quadrature amplitude modulation (QAM) is the name of a family of digital modulation methods and a related family of analog modulation methods widely used in modern telecommunications to transmit information. It conveys two analog message signal ...
(QAM) or
orthogonal frequency-division multiplexing (OFDM), which typically makes it very robust and efficient (and equipping them with accurate ranging capabilities, which is difficult without CDMA). Other schemes use subcarriers based on
binary offset carrier modulation
Binary offset carrier modulation (BOC modulation) was developed by John Betz in order to allow interoperability of satellite navigation systems. It is currently used in the US GPS system, Indian IRNSS system and in Galileo and is a square sub-car ...
(BOC modulation), which is inspired by
Manchester codes and enable a larger gap between the virtual center frequency and the subcarriers, which is not the case for OFDM subcarriers. Many carriers (such as
AT&T
AT&T Inc. is an American multinational telecommunications holding company headquartered at Whitacre Tower in Downtown Dallas, Texas. It is the world's largest telecommunications company by revenue and the third largest provider of mobile tel ...
and
Verizon
Verizon Communications Inc., commonly known as Verizon, is an American multinational telecommunications conglomerate and a corporate component of the Dow Jones Industrial Average. The company is headquartered at 1095 Avenue of the Americas in ...
) will shut down 3G CDMA networks in 2022.
History
The technology of code-division multiple access channels has long been known.
USA
In the US, one of the earliest descriptions of CDMA can be found in the summary report of Project Hartwell on "The Security of Overseas Transport", which was a summer research project carried out at the
Massachusetts Institute of Technology
The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of the ...
from June to August 1950.
Further research in the context of
jamming and
anti-jamming
Electronic counter-countermeasures (ECCM) is a part of electronic warfare which includes a variety of practices which attempt to reduce or eliminate the effect of electronic countermeasures (ECM) on electronic sensors aboard vehicles, ships and ...
was carried out in 1952 at
Lincoln Lab
The MIT Lincoln Laboratory, located in Lexington, Massachusetts, is a United States Department of Defense federally funded research and development center chartered to apply advanced technology to problems of national security. Research and de ...
.
USSR
In the
Soviet Union
The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen national ...
(USSR), the first work devoted to this subject was published in 1935 by
Dmitry Ageev. It was shown that through the use of linear methods, there are three types of signal separation: frequency, time and compensatory. The technology of CDMA was used in 1957, when the young military radio engineer
Leonid Kupriyanovich
Leonid Ivanovich Kupriyanovich (, 14 July 1929 – 1 January 1996) was a Soviet engineer from Moscow who is credited for early development of a mobile phone device.
Career
In 1953 Kupriyanovich graduated MSTU named after N. Bauman.
In 1955 L ...
in Moscow made an experimental model of a wearable automatic mobile phone, called LK-1 by him, with a base station. LK-1 has a weight of 3 kg, 20–30 km operating distance, and 20–30 hours of battery life. The base station, as described by the author, could serve several customers. In 1958, Kupriyanovich made the new experimental "pocket" model of mobile phone. This phone weighed 0.5 kg. To serve more customers, Kupriyanovich proposed the device, which he called "correlator." In 1958, the USSR also started the development of the "
Altai" national civil mobile phone service for cars, based on the Soviet MRT-1327 standard. The phone system weighed . It was placed in the trunk of the vehicles of high-ranking officials and used a standard handset in the passenger compartment. The main developers of the Altai system were VNIIS (Voronezh Science Research Institute of Communications) and GSPI (State Specialized Project Institute). In 1963 this service started in Moscow, and in 1970 Altai service was used in 30 USSR cities.
Uses
* Synchronous CDM (code-division 'multiplexing', an early generation of CDMA) was implemented in the
Global Positioning System
The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sy ...
(GPS). This predates and is distinct from its use in
mobile phone
A mobile phone, cellular phone, cell phone, cellphone, handphone, hand phone or pocket phone, sometimes shortened to simply mobile, cell, or just phone, is a portable telephone that can make and receive calls over a radio frequency link whil ...
s.
* The
Qualcomm
Qualcomm () is an American multinational corporation headquartered in San Diego, California, and incorporated in Delaware. It creates semiconductors, software, and services related to wireless technology. It owns patents critical to the 5G, 4 ...
standard
IS-95
Interim Standard 95 (IS-95) was the first ever CDMA-based digital cellular technology. It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The ...
, marketed as cdmaOne.
* The Qualcomm standard
IS-2000
CDMA2000 (also known as C2K or IMT Multi‑Carrier (IMT‑MC)) is a family of 3G mobile technology standards for sending voice, data, and signaling data between mobile phones and cell sites. It is developed by 3GPP2 as a backwards-compatible ...
, known as CDMA2000, is used by several mobile phone companies, including the
Globalstar
Globalstar, Inc. is an American satellite communications company that operates a low Earth orbit (LEO) satellite constellation for satellite phone and low-speed data communications. The Globalstar second-generation constellation consists of 24 l ...
network.
* The
UMTS
The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP (3rd Generation Partnership Project), UMTS is a component of the Inte ...
3G mobile phone standard, which uses
W-CDMA
The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP (3rd Generation Partnership Project), UMTS is a component of the Inte ...
.
* CDMA has been used in the OmniTRACS satellite system for transportation
logistics
Logistics is generally the detailed organization and implementation of a complex operation. In a general business sense, logistics manages the flow of goods between the point of origin and the point of consumption to meet the requirements of ...
.
Steps in CDMA modulation
CDMA is a spread-spectrum multiple-access technique. A spread-spectrum technique spreads the bandwidth of the data uniformly for the same transmitted power. A spreading code is a pseudo-random code that has a narrow
ambiguity function, unlike other narrow pulse codes. In CDMA a locally generated code runs at a much higher rate than the data to be transmitted. Data for transmission is combined by bitwise
XOR
Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false).
It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , ...
(exclusive OR) with the faster code. The figure shows how a spread-spectrum signal is generated. The data signal with pulse duration of
(symbol period) is XORed with the code signal with pulse duration of
(chip period). (Note:
bandwidth
Bandwidth commonly refers to:
* Bandwidth (signal processing) or ''analog bandwidth'', ''frequency bandwidth'', or ''radio bandwidth'', a measure of the width of a frequency range
* Bandwidth (computing), the rate of data transfer, bit rate or thr ...
is proportional to
, where
= bit time.) Therefore, the bandwidth of the data signal is
and the bandwidth of the spread spectrum signal is
. Since
is much smaller than
, the bandwidth of the spread-spectrum signal is much larger than the bandwidth of the original signal. The ratio
is called the spreading factor or processing gain and determines to a certain extent the upper limit of the total number of users supported simultaneously by a base station.
Each user in a CDMA system uses a different code to modulate their signal. Choosing the codes used to modulate the signal is very important in the performance of CDMA systems. The best performance occurs when there is good separation between the signal of a desired user and the signals of other users. The separation of the signals is made by
correlating the received signal with the locally generated code of the desired user. If the signal matches the desired user's code, then the correlation function will be high and the system can extract that signal. If the desired user's code has nothing in common with the signal, the correlation should be as close to zero as possible (thus eliminating the signal); this is referred to as
cross-correlation
In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a ''sliding dot product'' or ''sliding inner-product''. It is commonly used fo ...
. If the code is correlated with the signal at any time offset other than zero, the correlation should be as close to zero as possible. This is referred to as auto-correlation and is used to reject multi-path interference.
An analogy to the problem of multiple access is a room (channel) in which people wish to talk to each other simultaneously. To avoid confusion, people could take turns speaking (time division), speak at different pitches (frequency division), or speak in different languages (code division). CDMA is analogous to the last example where people speaking the same language can understand each other, but other languages are perceived as
noise
Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arise ...
and rejected. Similarly, in radio CDMA, each group of users is given a shared code. Many codes occupy the same channel, but only users associated with a particular code can communicate.
In general, CDMA belongs to two basic categories: synchronous (orthogonal codes) and asynchronous (pseudorandom codes).
Code-division multiplexing (synchronous CDMA)
The digital modulation method is analogous to those used in simple radio transceivers. In the analog case, a low-frequency data signal is time-multiplied with a high-frequency pure sine-wave carrier and transmitted. This is effectively a frequency convolution (
Wiener–Khinchin theorem
In applied mathematics, the Wiener–Khinchin theorem or Wiener–Khintchine theorem, also known as the Wiener–Khinchin–Einstein theorem or the Khinchin–Kolmogorov theorem, states that the autocorrelation function of a wide-sense-stationary ...
) of the two signals, resulting in a carrier with narrow sidebands. In the digital case, the sinusoidal carrier is replaced by
Walsh function
In mathematics, more specifically in harmonic analysis, Walsh functions form a complete orthogonal set of functions that can be used to represent any discrete function—just like trigonometric functions can be used to represent any continuous fu ...
s. These are binary square waves that form a complete orthonormal set. The data signal is also binary and the time multiplication is achieved with a simple XOR function. This is usually a
Gilbert cell mixer in the circuitry.
Synchronous CDMA exploits mathematical properties of
orthogonality
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''.
By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
between
vectors representing the data strings. For example, the binary string ''1011'' is represented by the vector (1, 0, 1, 1). Vectors can be multiplied by taking their
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algebra ...
, by summing the products of their respective components (for example, if u = (''a'', ''b'') and v = (''c'', ''d''), then their dot product u·v = ''ac'' + ''bd''). If the dot product is zero, the two vectors are said to be ''orthogonal'' to each other. Some properties of the dot product aid understanding of how
W-CDMA
The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP (3rd Generation Partnership Project), UMTS is a component of the Inte ...
works. If vectors a and b are orthogonal, then
and:
:
:
:
:
Each user in synchronous CDMA uses a code orthogonal to the others' codes to modulate their signal. An example of 4 mutually orthogonal digital signals is shown in the figure below. Orthogonal codes have a cross-correlation equal to zero; in other words, they do not interfere with each other. In the case of IS-95, 64-bit
Walsh code
The Hadamard code is an error-correcting code named after Jacques Hadamard that is used for error detection and correction when transmitting messages over very noisy or unreliable channels. In 1971, the code was used to transmit photos of M ...
s are used to encode the signal to separate different users. Since each of the 64 Walsh codes is orthogonal to all other, the signals are channelized into 64 orthogonal signals. The following example demonstrates how each user's signal can be encoded and decoded.
Example
Start with a set of vectors that are mutually
orthogonal
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''.
By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
. (Although mutual orthogonality is the only condition, these vectors are usually constructed for ease of decoding, for example columns or rows from
Walsh matrices.) An example of orthogonal functions is shown in the adjacent picture. These vectors will be assigned to individual users and are called the ''code'', ''
chip Chromatin immunoprecipitation (ChIP) is a type of immunoprecipitation experimental technique used to investigate the interaction between proteins and DNA in the cell. It aims to determine whether specific proteins are associated with specific genom ...
code'', or ''chipping code''. In the interest of brevity, the rest of this example uses codes v with only two bits.
Each user is associated with a different code, say v. A 1 bit is represented by transmitting a positive code v, and a 0 bit is represented by a negative code −v. For example, if v = (''v''
0, ''v''
1) = (1, −1) and the data that the user wishes to transmit is (1, 0, 1, 1), then the transmitted symbols would be
:(v, −v, v, v) = (''v''
0, ''v''
1, −''v''
0, −''v''
1, ''v''
0, ''v''
1, ''v''
0, ''v''
1) = (1, −1, −1, 1, 1, −1, 1, −1).
For the purposes of this article, we call this constructed vector the ''transmitted vector''.
Each sender has a different, unique vector v chosen from that set, but the construction method of the transmitted vector is identical.
Now, due to physical properties of interference, if two signals at a point are in phase, they add to give twice the amplitude of each signal, but if they are out of phase, they subtract and give a signal that is the difference of the amplitudes. Digitally, this behaviour can be modelled by the addition of the transmission vectors, component by component.
If sender0 has code (1, −1) and data (1, 0, 1, 1), and sender1 has code (1, 1) and data (0, 0, 1, 1), and both senders transmit simultaneously, then this table describes the coding steps:
Because signal0 and signal1 are transmitted at the same time into the air, they add to produce the raw signal
:(1, −1, −1, 1, 1, −1, 1, −1) + (−1, −1, −1, −1, 1, 1, 1, 1) = (0, −2, −2, 0, 2, 0, 2, 0).
This raw signal is called an interference pattern. The receiver then extracts an intelligible signal for any known sender by combining the sender's code with the interference pattern. The following table explains how this works and shows that the signals do not interfere with one another:
Further, after decoding, all values greater than 0 are interpreted as 1, while all values less than zero are interpreted as 0. For example, after decoding, data0 is (2, −2, 2, 2), but the receiver interprets this as (1, 0, 1, 1). Values of exactly 0 mean that the sender did not transmit any data, as in the following example:
Assume signal0 = (1, −1, −1, 1, 1, −1, 1, −1) is transmitted alone. The following table shows the decode at the receiver:
When the receiver attempts to decode the signal using sender1's code, the data is all zeros; therefore the cross-correlation is equal to zero and it is clear that sender1 did not transmit any data.
Asynchronous CDMA
When mobile-to-base links cannot be precisely coordinated, particularly due to the mobility of the handsets, a different approach is required. Since it is not mathematically possible to create signature sequences that are both orthogonal for arbitrarily random starting points and which make full use of the code space, unique "pseudo-random" or "pseudo-noise" sequences called spreading sequences are used in ''asynchronous'' CDMA systems. A spreading sequence is a binary sequence that appears random but can be reproduced in a deterministic manner by intended receivers. These spreading sequences are used to encode and decode a user's signal in asynchronous CDMA in the same manner as the orthogonal codes in synchronous CDMA (shown in the example above). These spreading sequences are statistically uncorrelated, and the sum of a large number of spreading sequences results in ''multiple access interference'' (MAI) that is approximated by a Gaussian noise process (following the
central limit theorem
In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselv ...
in statistics).
Gold code
A Gold code, also known as Gold sequence, is a type of binary sequence, used in telecommunication (CDMA) and satellite navigation (GPS). Gold codes are named after Robert Gold. Gold codes have bounded small cross-correlations within a set, which ...
s are an example of a spreading sequence suitable for this purpose, as there is low correlation between the codes. If all of the users are received with the same power level, then the variance (e.g., the noise power) of the MAI increases in direct proportion to the number of users. In other words, unlike synchronous CDMA, the signals of other users will appear as noise to the signal of interest and interfere slightly with the desired signal in proportion to number of users.
All forms of CDMA use the
spread-spectrum
In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal (e.g., an electrical, electromagnetic, or acoustic signal) generated with a particular bandwidth is deliberately spread in the frequency dom ...
spreading factor
In digital communications, a chip is a pulse of a direct-sequence spread spectrum (DSSS) code, such as a pseudo-random noise (PN) code sequence used in direct-sequence code-division multiple access (CDMA) channel access techniques.
In a binary di ...
to allow receivers to partially discriminate against unwanted signals. Signals encoded with the specified spreading sequences are received, while signals with different sequences (or the same sequences but different timing offsets) appear as wideband noise reduced by the spreading factor.
Since each user generates MAI, controlling the signal strength is an important issue with CDMA transmitters. A CDM (synchronous CDMA), TDMA, or FDMA receiver can in theory completely reject arbitrarily strong signals using different codes, time slots or frequency channels due to the orthogonality of these systems. This is not true for asynchronous CDMA; rejection of unwanted signals is only partial. If any or all of the unwanted signals are much stronger than the desired signal, they will overwhelm it. This leads to a general requirement in any asynchronous CDMA system to approximately match the various signal power levels as seen at the receiver. In CDMA cellular, the base station uses a fast closed-loop power-control scheme to tightly control each mobile's transmit power.
In 2019, schemes to precisely estimate the required length of the codes in dependence of Doppler and delay characteristics have been developed. Soon after, machine learning based techniques that generate sequences of a desired length and spreading properties have been published as well. These are highly competitive with the classic Gold and Welch sequences. These are not generated by linear-feedback-shift-registers, but have to be stored in lookup tables.
Advantages of asynchronous CDMA over other techniques
Efficient practical utilization of the fixed frequency spectrum
In theory CDMA, TDMA and FDMA have exactly the same spectral efficiency, but, in practice, each has its own challenges – power control in the case of CDMA, timing in the case of TDMA, and frequency generation/filtering in the case of FDMA.
TDMA systems must carefully synchronize the transmission times of all the users to ensure that they are received in the correct time slot and do not cause interference. Since this cannot be perfectly controlled in a mobile environment, each time slot must have a guard time, which reduces the probability that users will interfere, but decreases the spectral efficiency.
Similarly, FDMA systems must use a guard band between adjacent channels, due to the unpredictable
Doppler shift
The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
of the signal spectrum because of user mobility. The guard bands will reduce the probability that adjacent channels will interfere, but decrease the utilization of the spectrum.
Flexible allocation of resources
Asynchronous CDMA offers a key advantage in the flexible allocation of resources i.e. allocation of spreading sequences to active users. In the case of CDM (synchronous CDMA), TDMA, and FDMA the number of simultaneous orthogonal codes, time slots, and frequency slots respectively are fixed, hence the capacity in terms of the number of simultaneous users is limited. There are a fixed number of orthogonal codes, time slots or frequency bands that can be allocated for CDM, TDMA, and FDMA systems, which remain underutilized due to the bursty nature of telephony and packetized data transmissions. There is no strict limit to the number of users that can be supported in an asynchronous CDMA system, only a practical limit governed by the desired bit error probability since the SIR (signal-to-interference ratio) varies inversely with the number of users. In a bursty traffic environment like mobile telephony, the advantage afforded by asynchronous CDMA is that the performance (bit error rate) is allowed to fluctuate randomly, with an average value determined by the number of users times the percentage of utilization. Suppose there are 2''N'' users that only talk half of the time, then 2''N'' users can be accommodated with the same ''average'' bit error probability as ''N'' users that talk all of the time. The key difference here is that the bit error probability for ''N'' users talking all of the time is constant, whereas it is a ''random'' quantity (with the same mean) for 2''N'' users talking half of the time.
In other words, asynchronous CDMA is ideally suited to a mobile network where large numbers of transmitters each generate a relatively small amount of traffic at irregular intervals. CDM (synchronous CDMA), TDMA, and FDMA systems cannot recover the underutilized resources inherent to bursty traffic due to the fixed number of
orthogonal
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''.
By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
codes, time slots or frequency channels that can be assigned to individual transmitters. For instance, if there are ''N'' time slots in a TDMA system and 2''N'' users that talk half of the time, then half of the time there will be more than ''N'' users needing to use more than ''N'' time slots. Furthermore, it would require significant overhead to continually allocate and deallocate the orthogonal-code, time-slot or frequency-channel resources. By comparison, asynchronous CDMA transmitters simply send when they have something to say and go off the air when they do not, keeping the same signature sequence as long as they are connected to the system.
Spread-spectrum characteristics of CDMA
Most modulation schemes try to minimize the bandwidth of this signal since bandwidth is a limited resource. However, spread-spectrum techniques use a transmission bandwidth that is several orders of magnitude greater than the minimum required signal bandwidth. One of the initial reasons for doing this was military applications including guidance and communication systems. These systems were designed using spread spectrum because of its security and resistance to jamming. Asynchronous CDMA has some level of privacy built in because the signal is spread using a pseudo-random code; this code makes the spread-spectrum signals appear random or have noise-like properties. A receiver cannot demodulate this transmission without knowledge of the pseudo-random sequence used to encode the data. CDMA is also resistant to jamming. A jamming signal only has a finite amount of power available to jam the signal. The jammer can either spread its energy over the entire bandwidth of the signal or jam only part of the entire signal.
CDMA can also effectively reject narrow-band interference. Since narrow-band interference affects only a small portion of the spread-spectrum signal, it can easily be removed through notch filtering without much loss of information.
Convolution encoding
In telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of t ...
and
interleaving can be used to assist in recovering this lost data. CDMA signals are also resistant to multipath fading. Since the spread-spectrum signal occupies a large bandwidth, only a small portion of this will undergo fading due to multipath at any given time. Like the narrow-band interference, this will result in only a small loss of data and can be overcome.
Another reason CDMA is resistant to multipath interference is because the delayed versions of the transmitted pseudo-random codes will have poor correlation with the original pseudo-random code, and will thus appear as another user, which is ignored at the receiver. In other words, as long as the multipath channel induces at least one chip of delay, the multipath signals will arrive at the receiver such that they are shifted in time by at least one chip from the intended signal. The correlation properties of the pseudo-random codes are such that this slight delay causes the multipath to appear uncorrelated with the intended signal, and it is thus ignored.
Some CDMA devices use a
rake receiver
A rake receiver is a radio receiver designed to counter the effects of multipath fading. It does this by using several "sub-receivers" called ''fingers'', that is, several correlators each assigned to a different multipath component. Each finger ...
, which exploits multipath delay components to improve the performance of the system. A rake receiver combines the information from several correlators, each one tuned to a different path delay, producing a stronger version of the signal than a simple receiver with a single correlation tuned to the path delay of the strongest signal.
Frequency reuse is the ability to reuse the same radio channel frequency at other cell sites within a cellular system. In the FDMA and TDMA systems, frequency planning is an important consideration. The frequencies used in different cells must be planned carefully to ensure signals from different cells do not interfere with each other. In a CDMA system, the same frequency can be used in every cell, because channelization is done using the pseudo-random codes. Reusing the same frequency in every cell eliminates the need for frequency planning in a CDMA system; however, planning of the different pseudo-random sequences must be done to ensure that the received signal from one cell does not correlate with the signal from a nearby cell.
Since adjacent cells use the same frequencies, CDMA systems have the ability to perform soft hand-offs. Soft hand-offs allow the mobile telephone to communicate simultaneously with two or more cells. The best signal quality is selected until the hand-off is complete. This is different from hard hand-offs utilized in other cellular systems. In a hard-hand-off situation, as the mobile telephone approaches a hand-off, signal strength may vary abruptly. In contrast, CDMA systems use the soft hand-off, which is undetectable and provides a more reliable and higher-quality signal.
Collaborative CDMA
A novel collaborative multi-user transmission and detection scheme called collaborative CDMA
has been investigated for the uplink that exploits the differences between users' fading channel signatures to increase the user capacity well beyond the spreading length in the MAI-limited environment. The authors show that it is possible to achieve this increase at a low complexity and high
bit error rate
In digital transmission, the number of bit errors is the number of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors.
The bit error rate (BER) i ...
performance in flat fading channels, which is a major research challenge for overloaded CDMA systems. In this approach, instead of using one sequence per user as in conventional CDMA, the authors group a small number of users to share the same spreading sequence and enable group spreading and despreading operations. The new collaborative multi-user receiver consists of two stages: group multi-user detection (MUD) stage to suppress the MAI between the groups and a low-complexity maximum-likelihood detection stage to recover jointly the co-spread users' data using minimal Euclidean-distance measure and users' channel-gain coefficients. An enhanced CDMA version known as interleave-division multiple access (IDMA) uses the orthogonal interleaving as the only means of user separation in place of signature sequence used in CDMA system.
See also
*
CDMA spectral efficiency
CDMA spectral efficiency refers to the system spectral efficiency in bit/s/Hz/site or Erlang/MHz/site that can be achieved in a certain CDMA based wireless communication system. CDMA techniques (also known as spread spectrum) are characterized by ...
*
CDMA2000
CDMA2000 (also known as C2K or IMT Multi‑Carrier (IMT‑MC)) is a family of 3G mobile technology standards for sending voice, data, and signaling data between mobile phones and cell sites. It is developed by 3GPP2 as a backwards-compatible ...
*
Comparison of mobile phone standards
This is a comparison of standards of mobile phones. A new generation of cellular standards has appeared approximately every tenth year since 1G systems were introduced in 1979 and the early to mid-1980s.
Issues
Global System for Mobile Commun ...
*
cdmaOne
Interim Standard 95 (IS-95) was the first ever CDMA-based digital cellular technology. It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. Th ...
*
Orthogonal variable spreading factor
In digital communications, a chip is a pulse of a direct-sequence spread spectrum (DSSS) code, such as a pseudo-random noise (PN) code sequence used in direct-sequence code-division multiple access (CDMA) channel access techniques.
In a binary ...
(OVSF), an implementation of CDMA
*
Pseudo-random noise
In cryptography, pseudorandom noise (PRN) is a signal similar to noise which satisfies one or more of the standard tests for statistical randomness. Although it seems to lack any definite pattern, pseudorandom noise consists of a deterministic s ...
*
Quadrature-division multiple access (QDMA), an implementation of CDMA
*
Rise over thermal
*
Spread spectrum
In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal (e.g., an electrical, electromagnetic, or acoustic signal) generated with a particular bandwidth is deliberately spread in the frequency dom ...
*
W-CDMA
The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP (3rd Generation Partnership Project), UMTS is a component of the Inte ...
Notes
References
Further reading
* Papathanassiou, A., Salkintzis, A. K., & Mathiopoulos, P. T. (2001)
"A comparison study of the uplink performance of W-CDMA and OFDM for mobile multimedia communications via LEO satellites" ''IEEE Personal Communications'', 8(3), 35–43.
External links
Talk at Princeton Institute for Advanced Study on Solomon Golomb's work on pseudorandom sequences
{{DEFAULTSORT:Code Division Multiple Access
Multiplexing
Radio resource management
Media access control