Binary tetrahedral group
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the binary tetrahedral group, denoted 2T or , Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST is a certain
nonabelian group In mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (''G'', ∗) in which there exists at least one pair of elements ''a'' and ''b'' of ''G'', such that ''a'' ∗ ' ...
of order 24. It is an
extension Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (predicate logic), the set of tuples of values that satisfy the predicate * E ...
of the
tetrahedral group 150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection a ...
T or (2,3,3) of order 12 by a
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
of order 2, and is the
preimage In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) ...
of the tetrahedral group under the 2:1
covering homomorphism In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous group homomorphism. The map ''p'' is called the covering homomorphism. ...
Spin(3) → SO(3) of the
special orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. T ...
by the
spin group In mathematics the spin group Spin(''n'') page 15 is the double cover of the special orthogonal group , such that there exists a short exact sequence of Lie groups (when ) :1 \to \mathrm_2 \to \operatorname(n) \to \operatorname(n) \to 1. As a L ...
. It follows that the binary tetrahedral group is a
discrete subgroup In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and o ...
of Spin(3) of order 24. The
complex reflection group In mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise. Complex reflection groups arise ...
named 3(24)3 by G.C. Shephard or 3 and by
Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington to ...
, is isomorphic to the binary tetrahedral group. The binary tetrahedral group is most easily described concretely as a discrete subgroup of the
unit quaternion In mathematics, a versor is a quaternion of norm one (a ''unit quaternion''). The word is derived from Latin ''versare'' = "to turn" with the suffix ''-or'' forming a noun from the verb (i.e. ''versor'' = "the turner"). It was introduced by Will ...
s, under the isomorphism , where
Sp(1) In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic gro ...
is the multiplicative group of unit quaternions. (For a description of this homomorphism see the article on
quaternions and spatial rotation Unit quaternions, known as ''versors'', provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation abou ...
s.)


Elements

Explicitly, the binary tetrahedral group is given as the
group of units In algebra, a unit of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the element is unique for this ...
in the
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
of Hurwitz integers. There are 24 such units given by :\ with all possible sign combinations. All 24 units have absolute value 1 and therefore lie in the unit quaternion group Sp(1). The
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of these 24 elements in 4-dimensional space form a
convex regular 4-polytope In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regu ...
called the
24-cell In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, oct ...
.


Properties

The binary tetrahedral group, denoted by 2T, fits into the
short exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context o ...
:1\to\\to 2\mathrm\to \mathrm \to 1. This sequence does not
split Split(s) or The Split may refer to: Places * Split, Croatia, the largest coastal city in Croatia * Split Island, Canada, an island in the Hudson Bay * Split Island, Falkland Islands * Split Island, Fiji, better known as Hạfliua Arts, enterta ...
, meaning that 2T is ''not'' a
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in w ...
of by T. In fact, there is no subgroup of 2T isomorphic to T. The binary tetrahedral group is the
covering group In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous group homomorphism. The map ''p'' is called the covering homomorphism. ...
of the tetrahedral group. Thinking of the tetrahedral group as the
alternating group In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic prop ...
on four letters, , we thus have the binary tetrahedral group as the covering group, The
center Center or centre may refer to: Mathematics *Center (geometry), the middle of an object * Center (algebra), used in various contexts ** Center (group theory) ** Center (ring theory) * Graph center, the set of all vertices of minimum eccentrici ...
of 2T is the subgroup . The
inner automorphism group In abstract algebra an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the ''conjugating element''. They can be realized via simple operations from within the group its ...
is isomorphic to A4, and the full
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
is isomorphic to S4. The binary tetrahedral group can be written as a
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in w ...
:2\mathrm=\mathrm\rtimes\mathrm_3 where Q is the
quaternion group In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. It is given by the group presentation :\mathrm_8 ...
consisting of the 8
Lipschitz unit In mathematics, a Hurwitz quaternion (or Hurwitz integer) is a quaternion whose components are ''either'' all integers ''or'' all half-integers (halves of odd integers; a mixture of integers and half-integers is excluded). The set of all Hurwitz qua ...
s and C3 is the
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
of order 3 generated by . The group Z3 acts on the normal subgroup Q by
conjugation Conjugation or conjugate may refer to: Linguistics * Grammatical conjugation, the modification of a verb from its basic form * Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics * Complex conjugation, the chang ...
. Conjugation by is the automorphism of Q that cyclically rotates , , and . One can show that the binary tetrahedral group is isomorphic to the
special linear group In mathematics, the special linear group of degree ''n'' over a field ''F'' is the set of matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the genera ...
SL(2,3) – the group of all matrices over the
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
F3 with unit determinant, with this isomorphism covering the isomorphism of the
projective special linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associate ...
PSL(2,3) with the alternating group A4.


Presentation

The group 2T has a
presentation A presentation conveys information from a speaker to an audience. Presentations are typically demonstrations, introduction, lecture, or speech meant to inform, persuade, inspire, motivate, build goodwill, or present a new idea/product. Presenta ...
given by :\langle r,s,t \mid r^2 = s^3 = t^3 = rst \rangle or equivalently, :\langle s,t \mid (st)^2 = s^3 = t^3 \rangle. Generators with these relations are given by :r = i \qquad s = \tfrac(1+i+j+k) \qquad t = \tfrac(1+i+j-k), with r^2 = s^3 = t^3 = -1.


Subgroups

The
quaternion group In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. It is given by the group presentation :\mathrm_8 ...
consisting of the 8
Lipschitz unit In mathematics, a Hurwitz quaternion (or Hurwitz integer) is a quaternion whose components are ''either'' all integers ''or'' all half-integers (halves of odd integers; a mixture of integers and half-integers is excluded). The set of all Hurwitz qua ...
s forms a
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G i ...
of 2T of
index Index (or its plural form indices) may refer to: Arts, entertainment, and media Fictional entities * Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index'' * The Index, an item on a Halo megastru ...
3. This group and the center are the only nontrivial normal subgroups. All other subgroups of 2T are
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
s generated by the various elements, with orders 3, 4, and 6.


Higher dimensions

Just as the tetrahedral group generalizes to the rotational symmetry group of the ''n''-
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
(as a subgroup of SO(''n'')), there is a corresponding higher binary group which is a 2-fold cover, coming from the cover Spin(''n'') → SO(''n''). The rotational symmetry group of the ''n''-simplex can be considered as the
alternating group In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic prop ...
on ''n'' + 1 points, A''n''+1, and the corresponding binary group is a 2-fold
covering group In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous group homomorphism. The map ''p'' is called the covering homomorphism. ...
. For all higher dimensions except A6 and A7 (corresponding to the 5-dimensional and 6-dimensional simplexes), this binary group is the
covering group In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous group homomorphism. The map ''p'' is called the covering homomorphism. ...
(maximal cover) and is superperfect, but for dimensional 5 and 6 there is an additional exceptional 3-fold cover, and the binary groups are not superperfect.


Usage in theoretical physics

The binary tetrahedral group was used in the context of
Yang–Mills theory In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(''N''), or more generally any compact, reductive Lie algebra. Yang–Mills theory seeks to describe the behavior of elementary particles using th ...
in 1956 by
Chen Ning Yang Yang Chen-Ning or Chen-Ning Yang (; born 1 October 1922), also known as C. N. Yang or by the English name Frank Yang, is a Chinese theoretical physicist who made significant contributions to statistical mechanics, integrable systems, gauge the ...
and others. It was first used in flavor physics model building by
Paul Frampton Paul Howard Frampton is an English theoretical physicist who works in particle theory and cosmology. From 1996 until 2014, he was the Louis D. Rubin, Jr. Distinguished Professor of physics and astronomy, at the University of North Carolina at Ch ...
and Thomas Kephart in 1994. In 2012 it was shown that a relation between two neutrino mixing angles, derived by using this binary tetrahedral flavor symmetry, agrees with experiment.


See also

*
Binary polyhedral group In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that ...
*
Binary cyclic group In mathematics, the binary cyclic group of the ''n''-gon is the cyclic group of order 2''n'', C_, thought of as an extension of the cyclic group C_n by a cyclic group of order 2. Coxeter writes the ''binary cyclic group'' with angle-brackets, ⟨''n ...
, ⟨''n''⟩, order 2''n'' *
Binary dihedral group In group theory, a dicyclic group (notation Dic''n'' or Q4''n'', Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST) is a particular kind of non-abelian group of Order (group theory), order 4''n'' (''n'' > 1). It i ...
, ⟨2,2,''n''⟩, order 4''n'' *
Binary octahedral group In mathematics, the binary octahedral group, name as 2O or Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST is a certain nonabelian group of order 48. It is an extension of the chiral octahedral group ''O'' or (2, ...
, 2O = ⟨2,3,4⟩, order 48 *
Binary icosahedral group In mathematics, the binary icosahedral group 2''I'' or Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST is a certain nonabelian group of order 120. It is an extension of the icosahedral group ''I'' or (2,3,5) of o ...
, 2I = ⟨2,3,5⟩, order 120


Notes


References

* *{{cite book , author1=Coxeter, H. S. M. , author2=Moser, W. O. J. , name-list-style=amp , title=Generators and Relations for Discrete Groups, 4th edition , location=New York , publisher=Springer-Verlag , year=1980 , isbn=0-387-09212-9 6.5 The binary polyhedral groups, p. 68
Tetrahedral In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...