Buchholz Psi Functions
   HOME

TheInfoList



OR:

Buchholz's psi-functions are a hierarchy of single-argument ordinal functions \psi_\nu(\alpha) introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the \theta-functions, but nevertheless have the same strength as those. Later on this approach was extended by Jäger and Schütte.


Definition

Buchholz defined his functions as follows. Define: *Ωξ = ωξ if ξ > 0, Ω0 = 1 The functions ψ''v''(α) for α an ordinal, ''v'' an ordinal at most ω, are defined by induction on α as follows: *ψ''v''(α) is the smallest ordinal not in ''C''''v''(α) where ''C''''v''(α) is the smallest set such that *''C''''v''(α) contains all ordinals less than Ω''v'' *''C''''v''(α) is closed under ordinal addition *''C''''v''(α) is closed under the functions ψ''u'' (for ''u''≤ω) applied to arguments less than α. The limit of this notation is the Takeuti–Feferman–Buchholz ordinal.


Properties

Let P be the class of additively principal ordinals. Buchholz showed following properties of this functions: * \psi_\nu(0)=\Omega_\nu, * \psi_\nu(\alpha)\in P, * \psi_\nu(\alpha+1) = \min\\text \alpha\in C_\nu(\alpha), * \Omega_\nu\le\psi_\nu(\alpha)<\Omega_ * \psi_0(\alpha)=\omega^\alpha \text\alpha<\varepsilon_0, * \psi_\nu(\alpha)=\omega^ \text \alpha<\varepsilon_ \text \nu\neq 0, * \theta(\varepsilon_,0)=\psi(\varepsilon_) \text 0<\nu\le\omega.


Fundamental sequences and normal form for Buchholz's function


Normal form

The normal form for 0 is 0. If \alpha is a nonzero ordinal number \alpha<\Omega_\omega then the normal form for \alpha is \alpha=\psi_(\beta_1)+\psi_(\beta_2)+\cdots+\psi_(\beta_k) where \nu_i\in\mathbb N_0, k\in\mathbb N_, \beta_i\in C_(\beta_i) and \psi_(\beta_1)\geq\psi_(\beta_2)\geq\cdots\geq\psi_(\beta_k) and each \beta_i is also written in normal form.


Fundamental sequences

The fundamental sequence for an ordinal number \alpha with cofinality \operatorname(\alpha)=\beta is a strictly increasing sequence (\alpha
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
_ with length \beta and with limit \alpha, where \alpha
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
/math> is the \eta-th element of this sequence. If \alpha is a successor ordinal then \operatorname(\alpha)=1 and the fundamental sequence has only one element \alpha \alpha-1. If \alpha is a limit ordinal then \operatorname(\alpha)\in\ \cup \. For nonzero ordinals \alpha<\Omega_\omega, written in normal form, fundamental sequences are defined as follows: #If \alpha=\psi_(\beta_1)+\psi_(\beta_2)+\cdots+\psi_(\beta_k) where k\geq2 then \operatorname(\alpha)=\operatorname(\psi_(\beta_k)) and \alpha
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
\psi_(\beta_1)+\cdots+\psi_(\beta_)+(\psi_(\beta_k)
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
, #If \alpha=\psi_(0)=1, then \operatorname(\alpha)=1 and \alpha 0, #If \alpha=\psi_(0), then \operatorname(\alpha)=\Omega_ and \alpha
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
\Omega_
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
\eta, #If \alpha=\psi_(\beta+1) then \operatorname(\alpha)=\omega and \alpha
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
\psi_(\beta)\cdot \eta (and note: \psi_\nu(0)=\Omega_\nu), #If \alpha=\psi_(\beta) and \operatorname(\beta)\in\\cup\ then \operatorname(\alpha)=\operatorname(\beta) and \alpha
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
\psi_(\beta
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
, #If \alpha=\psi_(\beta) and \operatorname(\beta)\in\ then \operatorname(\alpha)=\omega and \alpha
eta Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
\psi_\nu(\beta gamma[\eta)_where_\left\{\begin{array}{lcr}_\gamma_\Omega_\mu_\\_\gamma[\eta+1.html" ;"title="eta.html" ;"title="gamma[\eta">gamma[\eta) where \left\{\begin{array}{lcr} \gamma \Omega_\mu \\ \gamma[\eta+1">eta.html" ;"title="gamma[\eta">gamma[\eta) where \left\{\begin{array}{lcr} \gamma \Omega_\mu \\ \gamma[\eta+1\psi_\mu(\beta gamma[\eta)\\ \end{array}\right..


Explanation

Buchholz is working in Zermelo–Fraenkel set theory, that means every ordinal \alpha is equal to set \{\beta\mid\beta<\alpha\}. Then condition C_\nu^0(\alpha)=\Omega_\nu means that set C_\nu^0(\alpha) includes all ordinals less than \Omega_\nu in other words C_\nu^0(\alpha)=\{\beta\mid\beta<\Omega_\nu\}. The condition C_\nu^{n+1}(\alpha) = C_\nu^n(\alpha) \cup \{\gamma \mid P(\gamma) \subseteq C_\nu^n(\alpha)\} \cup \{\psi_\mu(\xi) \mid \xi \in \alpha \cap C_\nu^n(\alpha) \wedge \mu \leq \omega\} means that set C_\nu^{n+1}(\alpha) includes: *all ordinals from previous set C_\nu^n(\alpha), * all ordinals that can be obtained by summation the additively principal ordinals from previous set C_\nu^n(\alpha), * all ordinals that can be obtained by applying ordinals less than \alpha from the previous set C_\nu^n(\alpha) as arguments of functions \psi_\mu, where \mu\le\omega. That is why we can rewrite this condition as: : C_\nu^{n+1}(\alpha) = \{\beta+\gamma,\psi_\mu(\eta)\mid\beta, \gamma,\eta\in C_\nu^n(\alpha)\wedge\eta<\alpha \wedge \mu \leq \omega\}. Thus union of all sets C_\nu^n (\alpha) with n<\omega i.e. C_\nu(\alpha) = \bigcup_{n < \omega} C_\nu^n (\alpha) denotes the set of all ordinals which can be generated from ordinals <\aleph_\nu by the functions + (addition) and \psi_{\mu}(\eta), where \mu\le\omega and \eta<\alpha. Then \psi_\nu(\alpha) = \min\{\gamma \mid \gamma \not\in C_\nu(\alpha)\} is the smallest ordinal that does not belong to this set. Examples Consider the following examples: : C_0^0(\alpha)=\{0\} =\{\beta\mid\beta<1\}, : C_0(0)=\{0\} (since no functions \psi(\eta<0) and 0 + 0 = 0). Then \psi_0(0)=1. C_0(1) includes \psi_0(0)=1 and all possible sums of natural numbers and therefore \psi_0(1)=\omega – first transfinite ordinal, which is greater than all natural numbers by its definition. C_0(2) includes \psi_0(0)=1, \psi_0(1)=\omega and all possible sums of them and therefore \psi_0(2)=\omega^2. If \alpha=\omega then C_0(\alpha)=\{0,\psi(0)=1,\ldots,\psi(1)=\omega,\ldots,\psi(2)=\omega^2,\ldots,\psi(3)=\omega^3, \ldots\} and \psi_0(\omega)=\omega^\omega. If \alpha=\Omega then C_0(\alpha)=\{0,\psi(0) = 1, \ldots, \psi(1) = \omega, \ldots, \psi(\omega) = \omega^\omega, \ldots, \psi(\omega^\omega) = \omega^{\omega^\omega},\ldots\} and \psi_0(\Omega)=\varepsilon_0 – the smallest epsilon number i.e. first fixed point of \alpha=\omega^\alpha. If \alpha=\Omega+1 then C_0(\alpha)=\{0,1,\ldots,\psi_0(\Omega)=\varepsilon_0,\ldots,\varepsilon_0+\varepsilon_0,\ldots,\psi_1(0)=\Omega,\ldots\} and \psi_0(\Omega+1)=\varepsilon_0\omega=\omega^{\varepsilon_0+1}. \psi_0(\Omega2)=\varepsilon_1 the second epsilon number, : \psi_0(\Omega^2) = \varepsilon_{\varepsilon_\cdots}=\zeta_0 i.e. first fixed point of \alpha=\varepsilon_\alpha, \varphi(\alpha,\beta)=\psi_0(\Omega^\alpha(1+\beta)), where \varphi denotes the Veblen's function, \psi_0(\Omega^\Omega)=\Gamma_0=\varphi(1,0,0)=\theta(\Omega,0), where \theta denotes the Feferman's function, : \psi_0(\Omega^{\Omega^2})=\varphi(1,0,0,0) is the Ackermann ordinal, : \psi_0(\Omega^{\Omega^\omega}) is the small Veblen ordinal, : \psi_0(\Omega^{\Omega^\Omega}) is the large Veblen ordinal, : \psi_0(\Omega\uparrow\uparrow\omega) =\psi_0(\varepsilon_{\Omega+1}) = \theta(\varepsilon_{\Omega+1},0). Now let's research how \psi_1 works: : C_1^0(0)=\{\beta\mid\beta<\Omega_1\}=\{0,\psi(0) = 1,2, \ldots \text{googol}, \ldots, \psi_0(1)=\omega, \ldots, \psi_0(\Omega) =\varepsilon_0,\ldots \ldots,\psi_0(\Omega^\Omega)=\Gamma_0,\ldots,\psi(\Omega^{\Omega^\Omega+\Omega^2}),\ldots\} i.e. includes all countable ordinals. And therefore C_1(0) includes all possible sums of all countable ordinals and \psi_1(0)=\Omega_1 first uncountable ordinal which is greater than all countable ordinal by its definition i.e. smallest number with cardinality \aleph_1. If \alpha=1 then C_1(\alpha)=\{0,\ldots,\psi_0(0) = \omega, \ldots, \psi_1(0) = \Omega,\ldots,\Omega+\omega,\ldots,\Omega+\Omega,\ldots\} and \psi_1(1)=\Omega\omega=\omega^{\Omega+1}. : \psi_1(2)=\Omega\omega^2=\omega^{\Omega+2}, : \psi_1(\psi_1(0))=\psi_1(\Omega)=\Omega^2=\omega^{\Omega+\Omega}, : \psi_1(\psi_1(\psi_1(0))) =\omega^{\Omega+\omega^{\Omega+\Omega = \omega^{\Omega\cdot\Omega} = (\omega^{\Omega})^\Omega=\Omega^\Omega, : \psi_1^4(0)=\Omega^{\Omega^\Omega}, : \psi_1^{k+1}(0)=\Omega\uparrow\uparrow k where k is a natural number, k \geq 2, : \psi_1(\Omega_2) = \psi_1^\omega(0) = \Omega \uparrow\uparrow \omega = \varepsilon_{\Omega+1}. For case \psi(\psi_2(0))=\psi(\Omega_2) the set C_0(\Omega_2) includes functions \psi_0 with all arguments less than \Omega_2 i.e. such arguments as 0, \psi_1(0), \psi_1(\psi_1(0)), \psi_1^3(0),\ldots, \psi_1^\omega(0) and then : \psi_0(\Omega_2) = \psi_0(\psi_1(\Omega_2)) = \psi_0(\varepsilon_{\Omega+1}). In the general case: : \psi_0(\Omega_{\nu+1}) = \psi_0(\psi_\nu(\Omega_{\nu+1})) = \psi_0(\varepsilon_{\Omega_\nu+1}) = \theta(\varepsilon_{\Omega_\nu+1},0). We also can write: : \theta(\Omega_\nu,0)=\psi_0(\Omega_\nu^\Omega) \text{ (for } 1\le\nu)<\omega


Ordinal notation

Buchholz defined an ordinal notation \mathsf{(OT, <)} associated to the \psi function. We simultaneously define the sets T and PT as formal strings consisting of 0, D_v indexed by v \in \omega + 1, braces and commas in the following way: * 0 \in T \and 0 \in PT, * \forall (v, a) \in (\omega + 1) \times T( D_va \in T \and D_va \in PT) . * \forall (a_0, a_1) \in PT^2((a_0, a_1) \in T). * \exists s (a_0 = s) \and (a_0, a_1) \in T \times PT \rightarrow (s, a_1) \in T. An element of T is called a ''term'', and an element of PT is called a ''principal term''. By definition, T is a recursive set and PT is a recursive subset of T. Every term is either 0, a principal term or a braced array of principal terms of length \geq 2. We denote a \in PT by (a). By convention, every term can be uniquely expressed as either 0 or a braced, non-empty array of principal terms. Since clauses 3 and 4 in the definition of T and PT are applicable only to arrays of length \geq 2, this convention does not cause serious ambiguity. We then define a binary relation a < b on T in the following way: * b = 0 \rightarrow a < b = \bot * a = 0 \rightarrow (a < b \leftrightarrow b \neq 0) * If a \neq 0 \and b \neq 0, then: ** If a = D_ua' \and b = D_vb' for some ((u, a'), (v, b')) \in ((\omega + 1) \times T)^2, then a < b is true if either of the following are true: *** u < v *** u = v \and a' < b' ** If a = (a_0, ..., a_n) \and b = (b_0, ..., b_m) for some (n, m) \in \N^2 \and 1 \leq n + m, then a < b is true if either of the following are true: *** \forall i \in \N \and i \leq n(n < m \and a_i = b_i) *** \exists k \in \N\forall i \in \N \and i < k(k \leq min\{n, m\} \and a_k < b_k \and a_i = b_1) < is a recursive strict total ordering on T. We abbreviate (a < b) \or (a = b) as a \leq b. Although \leq itself is not a well-ordering, its restriction to a recursive subset OT \subset T, which will be described later, forms a well-ordering. In order to define OT, we define a subset G_ua \subset T for each (u, a) \in (\omega + 1) \times T in the following way: * a = 0 \rightarrow G_ua = \varnothing * Suppose that a = D_va' for some (v, a') \in (\omega + 1) \times T, then: ** u \leq v \rightarrow G_ua = \{a'\} \cup G_ua' ** u > v \rightarrow G_ua = \varnothing * If a = (a_0, ..., a_k) for some (a_i)_{i=0}^k \in PT^{k + 1} for some k \in \N \backslash \{0\}, G_ua = \bigcup_{i=0}^k G_ua_i. b \in G_ua is a recursive relation on (u, a, b) \in (\omega + 1) \times T^2. Finally, we define a subset OT \subset T in the following way: * 0 \in OT * For any (v, a) \in (\omega + 1) \times T, D_va \in OT is equivalent to a \in OT and, for any a' \in G_va, a' < a. * For any (a_i)_{i=0}^k \in PT^{k + 1}, (a_0, ..., a_k) \in OT is equivalent to (a_i)_{i=0}^k \in OT and a_k \leq ... \leq a_0. OT is a recursive subset of T, and an element of OT is called an ''ordinal term''. We can then define a map o: OT \rightarrow C_0(\varepsilon_{\Omega_\omega+1}) in the following way: * a = 0 \rightarrow o(a) = 0 * If a = D_va' for some (v, a') \in (\omega + 1) \times OT, then o(a) = \psi_v(o(a')). * If a = (a_0, ..., a_k) for some (a_i)_{i=0}^k \in (OT \cap PT)^{k+1} with k \in \N \backslash \{0\}, then o(a) = o(a_0) \# ... \# o(a_k), where \# denotes the descending sum of ordinals, which coincides with the usual addition by the definition of OT. Buchholz verified the following properties of o: * The map o is an order-preserving bijective map with respect to < and \in. In particular, o is a recursive strict well-ordering on OT. * For any a \in OT satisfying a < D_10, o(a) coincides with the ordinal type of < restricted to the countable subset \{x \in OT \; , \; x < a\}. * The Takeuti-Feferman-Buchholz ordinal coincides with the ordinal type of < restricted to the recursive subset \{x \in OT \; , \; x < D_10\}. * The ordinal type of (OT, <) is greater than the Takeuti-Feferman-Buchholz ordinal. * For any v \in \N \; \backslash \; \{0\}, the well-foundedness of < restricted to the recursive subset \{x \in OT \; , \; x < D_0D_{v+1}0\} in the sense of the non-existence of a primitive recursive infinite descending sequence is not provable under \mathsf{ID}_v. * The well-foundedness of < restricted to the recursive subset\{x \in OT \; , \; x < D_0D_\omega0\} in the same sense as above is not provable under \Pi^1_1 - CA_0.


Normal form

The normal form for Buchholz's function can be defined by the pull-back of standard form for the ordinal notation associated to it by o. Namely, the set NF of predicates on ordinals in C_0(\varepsilon_{\Omega_\omega + 1}) is defined in the following way: * The predicate \alpha = _{NF}0 on an ordinal \alpha \in C_0(\varepsilon_{\Omega_\omega + 1}) defined as \alpha = 0 belongs to NF. * The predicate \alpha_0 = _{NF}\psi_{k_1}(\alpha_1) on ordinals \alpha_0, \alpha_1 \in C_0(\varepsilon_{\Omega_\omega + 1}) with k_1 = \omega + 1 defined as \alpha_0 = \psi_{k_1}(\alpha_1) and \alpha_1 = C_{k_1}(\alpha_1) belongs to NF. * The predicate \alpha_0 = _{NF}\alpha_1 + ... + \alpha_n on ordinals \alpha_0, \alpha_1, ..., \alpha_n \in C_0(\varepsilon_{\Omega_\omega + 1}) with an integer n > 1 defined as \alpha_0 = \alpha_1 + ... + \alpha_n, \alpha_1 \geq ... \geq \alpha_n, and \alpha_1, ..., \alpha_n \in AP belongs to NF. Here + is a function symbol rather than an actual addition, and AP denotes the class of additive principal numbers. It is also useful to replace the third case by the following one obtained by combining the second condition: * The predicate \alpha_0 = _{NF}\psi_{k_1}(\alpha_1) + ... + \psi_{k_n}(\alpha_n) on ordinals \alpha_0, \alpha_1, ..., \alpha_n \in C_0(\varepsilon_{\Omega_\omega + 1}) with an integer n > 1 and k_1, ..., k_n \in \omega + 1 defined as \alpha_0 = \psi_{k_1}(\alpha_1) + ... + \psi_{k_n}(\alpha_n), \psi_{k_1}(\alpha_1) \geq ... \geq \psi_{k_n}(\alpha_n), and \alpha_1 \in C_{k_1}(\alpha_1), ..., \alpha_n \in C_{k_n}(\alpha_n) \in AP belongs to NF. We note that those two formulations are not equivalent. For example, \psi_0(\Omega) + 1 = _{NF} \psi_0(\zeta_1) + \psi_0(0) is a valid formula which is false with respect to the second formulation because of \zeta_1 \neq C_0(\zeta_1), while it is a valid formula which is true with respect to the first formulation because of \psi_0(\Omega) + 1 = \psi_0(\zeta_1) + \psi_0(0), \psi_0(\zeta_1), \psi_0(0) \in AP, and \psi_0(\zeta_1) \geq \psi_0(0). In this way, the notion of normal form heavily depends on the context. In both formulations, every ordinal in C_0(\varepsilon_{\Omega_\omega + 1}) can be uniquely expressed in normal form for Buchholz's function.


References

Ordinal numbers