Brookhaven Medical Research Reactor
   HOME

TheInfoList



OR:

Medical Research Reactor (MRR) was a
research reactor Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritim ...
which was located at
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
, a United States Department of Energy national laboratory located in
Upton, New York Upton is a hamlet and census-designated place (CDP) on Long Island in the town of Brookhaven. It is the home of the Brookhaven National Laboratory and a National Weather Service weather forecast office. Upton is located on eastern Long Island in ...
, on
Long Island Long Island is a densely populated island in the southeastern region of the U.S. state of New York (state), New York, part of the New York metropolitan area. With over 8 million people, Long Island is the most populous island in the United Sta ...
, approximately 60 miles east of
New York City New York, often called New York City or NYC, is the List of United States cities by population, most populous city in the United States. With a 2020 population of 8,804,190 distributed over , New York City is also the L ...
. The second of three reactors constructed at BNL, the MRR operated from 1959 until 2000 and has been partially decommissioned.Brookhaven History: Using Reactors as Research Tools – Medical Research Reactor
Brookhaven National Laboratory. Accessed December 19, 2020
https://www.bnl.gov/60th/BMRR.asp “Sixty Years of Discovery – Medical Research Reactor.” BNL. Accessed December 20, 2020.


History

The primary purpose of the MRR was to produce
neutrons The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave ...
for medical research; MRR was the first reactor built specifically for medical research. As described in the lab’s 1964 annual report, “The Medical Research Reactor (MRR) was constructed for the sole purpose of exploring the possible applications of nuclear reactors to the study of man and his diseases. Each salient feature of the reactor was designed in relation to its use for therapy and diagnosis or in the advancement of basic medical science.”https://www.osti.gov/servlets/purl/4632170 “Brookhaven National Laboratory Annual Report.” July 1, 1964. One of the treatments pioneered at this reactor was boron neutron capture therapy, or BNCT. This promising treatment was developed for use against glioblastoma multiforme, an otherwise untreatable and deadly form of brain cancer. The reactor first reach criticality on March 15, 1959 and continued operations until December 2000. Experimental use included research concerned with the effects of ionizing radiation on tree seedlings, the application of neutron radiography to biological materials, thermal neutron irradiation of bacteria, and epithermal neutron irradiation studies utilizing the animal treatment facility for phantom and animal irradiations.


Design

The MRR was housed in a cylindrical steel building 60 feet in diameter and 54 feet high. The reactor was connected to the larger Medical Research Center by two sets of airlocks. The reactor vessel was a cylindrical aluminum tank only 24 inches in diameter and 7 feet 7 inches tall. Cooling water was provided by connected piping.
Farr, Lee E. “The Brookhaven Medical Research Reactor.” Science. October 23, 1959.
The reactor was fueled by
enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 ...
and cooled and moderated by light water. A neutron reflector surrounded the reactor vessel to improve neutron economy.https://www.cdc.gov/niosh/ocas/pdfs/tbd/brooknl-r2.pdf “Site Profile for the Brookhaven National Laboratory.” ORAUT-TKBS-0048 Rev. 2. February 7, 2013 Control rods entered from the top of the core; a thick wall of high density concrete surrounded the reactor vessel and associated equipment to provide protection for workers and patients. Air which provided cooling for the neutron reflector and neighboring structures became slightly activated due to the high neutron flux field (
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
-41) and was exhausted out a tall stack adjacent to the reactor building. As a research reactor, MRR never had a power conversion system to generate electricity; heat from the nuclear reactions was exhausted through the tall stack to the atmosphere and through heat exchangers to cooling water loops. Operation on an intermittent basis was demanded by the nature of the research program. Operating power levels up to 3 MW were approved for continuous operation, and levels up to 5 MW were permitted for intermittent periods not to exceed 10 minutes. By 1964, increased use of the reactor for irradiation of biological samples prompted the lab to increase the reactor core loading to 20 BSF-type fuel elements in order to maintain sufficient excess reactivity so that fission product poisoning would not prevent consecutive daily start-ups of the MRR. One of the reactor's four faces was equipped for the irradiation of large objects, while the holes that penetrated another face permitted irradiation of samples, activation analysis and production of short-lived radioisotopes. From the remaining two ports, streams of neutrons traveled to treatment rooms, for carefully controlled animal and human clinical studies. It produced a maximum neutron flux of about 20 trillion neutrons per square centimeter per second.


Decommissioning

Due to a reduction of research funding, the MRR conducted its last run on December 2000; transition and stabilization activities began in 2001.


See also

*
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
*
Brookhaven Graphite Research Reactor Brookhaven Graphite Research Reactor (BGRR) was a research reactor located at Brookhaven National Laboratory, a United States Department of Energy national laboratory located in Upton, New York, on Long Island, approximately 60 miles east of New Yo ...
(GBRR), the first reactor which operated at
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
*
High Flux Beam Reactor High Flux Beam Reactor (HFBR) was a research reactor which was located at Brookhaven National Laboratory, a United States Department of Energy national laboratory located in Upton, New York, on Long Island, approximately 60 miles east of New York C ...
(HFBR), the third and last reactor which operated at
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...


References

;Citations {{U.S. Nuclear Plants Nuclear research reactors