Brewster's angle (also known as the polarization angle) is an
angle of incidence
Angle of incidence is a measure of deviation of something from "straight on" and may refer to:
* Angle of incidence (aerodynamics), angle between a wing chord and the longitudinal axis, as distinct from angle of attack
In fluid dynamics, ang ...
at which
light with a particular
polarization
Polarization or polarisation may refer to:
Mathematics
*Polarization of an Abelian variety, in the mathematics of complex manifolds
*Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
is perfectly transmitted through a transparent
dielectric surface, with ''no
reflection''. When ''unpolarized'' light is incident at this angle, the light that is reflected from the surface is therefore perfectly polarized. This special angle of incidence is named after the Scottish physicist
Sir David Brewster (1781–1868).
Explanation
When light encounters a boundary between two
media with different
refractive indices, some of it is usually reflected as shown in the figure above. The fraction that is reflected is described by the
Fresnel equations, and depends on the incoming light's polarization and angle of incidence.
The Fresnel equations predict that light with the ''p'' polarization (
electric field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
polarized in the same
plane as the
incident ray and the
surface normal
In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve at ...
at the point of incidence) will not be reflected if the angle of incidence is
:
where ''n''
1 is the
refractive index of the initial medium through which the light propagates (the "incident medium"), and ''n''
2 is the index of the other medium. This equation is known as Brewster's law, and the angle defined by it is Brewster's angle.
The physical mechanism for this can be qualitatively understood from the manner in which electric
dipoles in the media respond to ''p''-polarized light. One can imagine that light incident on the surface is absorbed, and then re-radiated by oscillating electric dipoles at the interface between the two media. The polarization of freely propagating light is always perpendicular to the direction in which the light is travelling. The dipoles that produce the transmitted (refracted) light oscillate in the polarization direction of that light. These same oscillating dipoles also generate the reflected light. However, dipoles do not radiate any energy in the direction of the
dipole moment. If the refracted light is ''p''-polarized and propagates exactly perpendicular to the direction in which the light is predicted to be
specularly reflected
Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface.
The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surfa ...
, the dipoles point along the specular reflection direction and therefore no light can be reflected. (See diagram, above)
With simple geometry this condition can be expressed as
:
where ''θ''
1 is the angle of reflection (or incidence) and ''θ''
2 is the angle of refraction.
Using
Snell's law
Snell's law (also known as Snell–Descartes law and ibn-Sahl law and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through ...
,
:
one can calculate the incident angle at which no light is reflected:
:
Solving for ''θ''
B gives
:
For a glass medium () in air (), Brewster's angle for visible light is approximately 56°, while for an air-water interface (), it is approximately 53°. Since the refractive index for a given medium changes depending on the wavelength of light, Brewster's angle will also vary with wavelength.
The phenomenon of light being polarized by reflection from a surface at a particular angle was first observed by
Étienne-Louis Malus in 1808. He attempted to relate the polarizing angle to the refractive index of the material, but was frustrated by the inconsistent quality of glasses available at that time. In 1815, Brewster experimented with higher-quality materials and showed that this angle was a function of the refractive index, defining Brewster's law.
Brewster's angle is often referred to as the "polarizing angle", because light that reflects from a surface at this angle is entirely polarized perpendicular to the
plane of incidence ("''s''-polarized"). A glass plate or a stack of plates placed at Brewster's angle in a light beam can, thus, be used as a
polarizer
A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well ...
. The concept of a polarizing angle can be extended to the concept of a Brewster wavenumber to cover planar interfaces between two linear
bianisotropic material In physics, engineering and materials science, bi-isotropic materials have the special optical property that they can rotate the polarization of light in either refraction or transmission. This does not mean all materials with twist effect fall i ...
s. In the case of reflection at Brewster's angle, the reflected and refracted rays are mutually perpendicular.
For magnetic materials, Brewster's angle can exist for only one of the incident wave polarizations, as determined by the relative strengths of the dielectric permittivity and magnetic permeability. This has implications for the existence of generalized Brewster angles for dielectric metasurfaces.
Applications
While at the Brewster angle there is ''no'' reflection of the ''p'' polarization, at yet greater angles the
reflection coefficient of the ''p'' polarization is always less than that of the ''s'' polarization, almost up to 90° incidence where the reflectivity of each rises towards unity. Thus reflected light from horizontal surfaces (such as the surface of a road) at a distance much greater than ones height (so that the incidence angle of specularly reflected light is near, or usually well beyond the Brewster angle) is strongly ''s''-polarized.
Polarized sunglasses use a sheet of
polarizing material to block horizontally-polarized light and thus reduce
glare
Glare (derived from GLAss REinforced laminate ) is a fiber metal laminate (FML) composed of several very thin layers of metal (usually aluminum) interspersed with layers of S-2 glass-fiber ''pre-preg'', bonded together with a matrix such as epo ...
in such situations. These are most effective with smooth surfaces where
specular reflection (thus from light whose
angle of incidence
Angle of incidence is a measure of deviation of something from "straight on" and may refer to:
* Angle of incidence (aerodynamics), angle between a wing chord and the longitudinal axis, as distinct from angle of attack
In fluid dynamics, ang ...
is the same as the angle of reflection defined by the angle observed from) is dominant, but even
diffuse reflections from roads for instance, are also significantly reduced.
Photographers also use polarizing filters to remove reflections from water so that they can photograph objects beneath the surface. Using a
polarizing camera attachment which can be rotated, such a filter can be adjusted to reduce reflections from objects other than horizontal surfaces, such as seen in the accompanying photograph (right) where the ''s'' polarization (approximately vertical) has been eliminated using such a filter.
When recording a classical
hologram, the bright reference beam is typically arranged to strike the film in the ''p'' polarization at Brewster's angle. By thus eliminating reflection of the reference beam at the transparent back surface of the holographic film, unwanted interference effects in the resulting hologram are avoided.
Entrance windows or prisms with their surfaces at the Brewster angle are commonly used in optics and laser physics in particular. The polarized laser light enters the prism at Brewster's angle without any reflective losses.
In surface science,
Brewster angle microscopes are used to image layers of particles or molecules at air-liquid interfaces. Using illumination by a laser at Brewster's angle to the interface and observation at the angle of reflection, the uniform liquid does not reflect, appearing black in the image. However any molecular layers or artifacts at the surface, whose refractive index or physical structure contrasts with the liquid, allows for some reflection against that black background which is captured by a camera.
Brewster windows
Gas lasers using an external
cavity
Cavity may refer to:
Biology and healthcare
*Body cavity, a fluid-filled space in many animals where organs typically develop
**Gastrovascular cavity, the primary organ of digestion and circulation in cnidarians and flatworms
*Dental cavity or too ...
(reflection by one or both mirrors ''outside'' the
gain medium) generally seal the tube using windows tilted at Brewster's angle. This prevents light in the intended polarization from being lost through reflection (and reducing the round-trip gain of the laser) which is critical in lasers having a low round-trip gain. On the other hand it ''does'' remove ''s'' polarized light, increasing the round trip loss for that polarization, and insuring the laser only oscillates in one linear polarization, as is usually desired. And many sealed-tube lasers (which don't even need windows) have a glass plate inserted within the tube at the Brewster angle, simply for the purpose of allowing lasing in only one polarization.
[''Optics'', 3rd edition, Hecht, ]
Pseudo-Brewster's angle
When the reflecting surface is absorbing, reflectivity at parallel polarization (''p'') goes through a non-zero minimum at the so-called pseudo-Brewster's angle.
See also
*
Brewster angle microscope
References
Further reading
*
External links
Brewster's Angle Extractionfrom Wolfram Research
TE, TM Reflection Coefficients– interactive phase and magnitude plots showing Brewster's angle
{{DEFAULTSORT:Brewster's Angle
Geometrical optics
Physical optics
Angle
Polarization (waves)