Breit–Wheeler Process
   HOME

TheInfoList



OR:

The Breit–Wheeler process or Breit–Wheeler pair production is a physical process in which a
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
pair is created from the collision of two
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e+ e where γ and γ′ are two light quanta (for example, gamma photons). The multiphoton Breit–Wheeler process, also referred to as nonlinear Breit–Wheeler or strong field Breit–Wheeler in the literature, is the extension of the pure photon–photon Breit–Wheeler process when a high-energy probe photon decays into pairs propagating through an
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
(for example, a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
pulse). In contrast with the previous process, this one can take the form of γ + n ω → e+ e, where ω represents the coherent photons of the laser field. The inverse process, e+ e → γ γ′, in which an electron and a positron collide and annihilate to generate a pair of gamma photons, is known as
electron–positron annihilation Electron–positron annihilation occurs when an electron () and a positron (, the electron's antiparticle) collide. At low energies, the result of the collision is the annihilation of the electron and positron, and the creation of energetic photo ...
or the Dirac process for the name of the physicist who first described it theoretically and anticipated the Breit–Wheeler process. This mechanism is theoretically characterized by a very weak probability, so producing a significant number of pairs requires two extremely bright, collimated sources of photons having
photon energy Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, ...
close or above the electron and positron rest mass energy. Manufacturing such a source, a
gamma-ray laser A gamma-ray laser, or graser, is a hypothetical device that would produce coherent gamma rays, just as an ordinary laser produces coherent rays of visible light. Potential applications for gamma-ray lasers include medical imaging, spacecraft pr ...
, is still a technological challenge. In many experimental configurations, pure Breit–Wheeler is dominated by other more efficient pair creation processes that screen pairs produced via this mechanism. The Dirac process (
pair annihilation In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy ...
) has, on the other hand, been extensively verified. This is also the case for the multiphoton Breit–Wheeler, which was observed at the
Stanford Linear Accelerator Center SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Departme ...
in 1997 by colliding high-energy electrons with a counter-propagating terawatt laser pulse. Although this mechanism is still one of the most difficult to be observed experimentally on Earth, it is of considerable importance for the absorption of high-energy photons travelling cosmic distances. The photon–photon and the multiphoton Breit–Wheeler processes are described theoretically by the theory of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
.


History

The photon–photon Breit–Wheeler process was described theoretically by
Gregory Breit Gregory Breit (russian: Григорий Альфредович Брейт-Шнайдер, ''Grigory Alfredovich Breit-Shneider''; July 14, 1899, Mykolaiv, Kherson Governorate – September 13, 1981, Salem, Oregon) was a Russian-born Jewish Am ...
and
John A. Wheeler John Archibald Wheeler (July 9, 1911April 13, 2008) was an American theoretical physicist. He was largely responsible for reviving interest in general relativity in the United States after World War II. Wheeler also worked with Niels Bohr in e ...
in 1934 in ''
Physical Review ''Physical Review'' is a peer-reviewed scientific journal established in 1893 by Edward Nichols. It publishes original research as well as scientific and literature reviews on all aspects of physics. It is published by the American Physical S ...
''. It followed previous theoretical work of
Paul Dirac Paul Adrien Maurice Dirac (; 8 August 1902 – 20 October 1984) was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. He was the Lucasian Professor of Mathematics at the Univer ...
on antimatter and pair annihilation. In 1928, Paul Dirac's work proposed that electrons could have positive and negative energy states following the framework of relativistic quantum theory but did not explicitly predict the existence of a new particle.


Experimental observations


Photon–photon Breit–Wheeler possible experimental configurations

Although the process is one of the manifestations of the
mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physicis ...
, as of 2017, the pure Breit–Wheeler has never been observed in practice because of the difficulty in preparing colliding
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
beams and the very weak probability of this mechanism. Recently, different teams have proposed novel theoretical studies on possible experimental configurations to finally observe it on Earth. In 2014, physicists at
Imperial College London Imperial College London (legally Imperial College of Science, Technology and Medicine) is a public research university in London, United Kingdom. Its history began with Prince Albert, consort of Queen Victoria, who developed his vision for a cu ...
proposed a relatively simple way to physically demonstrate the Breit–Wheeler process. The collider experiment that the physicists proposed involves two key steps. First, they would use an extremely powerful high-intensity laser to accelerate electrons to nearly the speed of light. They would then fire these electrons into a slab of gold to create a beam of photons a billion times more energetic than those of visible light. The next stage of the experiment involves a tiny gold can called a
hohlraum In radiation thermodynamics, a hohlraum (a non-specific German word for a "hollow space" or "cavity") is a cavity whose walls are in radiative equilibrium with the radiant energy within the cavity. This idealized cavity can be approximated in pra ...
(German for 'empty room' or 'cavity'). Scientists would fire a high-energy laser at the inner surface of this hohlraum to create a thermal radiation field. They would then direct the photon beam from the first stage of the experiment through the centre of the hohlraum, causing the photons from the two sources to collide and form electrons and positrons. It would then be possible to detect the formation of the electrons and positrons when they exited the can.
Monte Carlo simulation Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be determini ...
s suggest that this technique is capable of producing of the order of 105 Breit–Wheeler pairs in a single shot. In 2016, a second novel experimental setup had been proposed and studied theoretically to demonstrate and study the Breit–Wheeler process. They propose to collide two high-energy photon sources (composed of non-coherent hard x-ray and gamma-ray photons) generated from the interaction of two extremely intense lasers on solid thin foils or gas jets. With the forthcoming generations of short-pulse extremely intense lasers, laser interaction with solid target will be the place of strong radiative effects driven by the nonlinear inverse quantum scattering. This effect, negligible so far, will become a dominant cooling mechanism for the extremely relativistic electrons accelerated above the 100 
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an Voltage, electric potential difference of one volt i ...
level at the laser-solid interface via different mechanisms.


Multiphoton Breit–Wheeler experiments

The multiphoton Breit–Wheeler has already been observed and studied experimentally. One of the most efficient configurations to maximize the multiphoton Breit–Wheeler pair production consists on colliding head-on a bunch of gamma photon with a counter-propagating (or with a slight collision angle, the co-propagating configuration being the less efficient configuration) ultra-high intensity laser pulse. To first create the photons and then have the pair production in an all-in-one setup, the similar configuration can be used by colliding
GeV GEV may refer to: * ''G.E.V.'' (board game), a tabletop game by Steve Jackson Games * Ashe County Airport, in North Carolina, United States * Gällivare Lapland Airport, in Sweden * Generalized extreme value distribution * Gev Sella, Israeli-Sou ...
electrons. Depending on the laser intensity, these electrons will first radiate gamma photons via the so-called
non-linear inverse Compton scattering Non-linear inverse Compton scattering (NICS), also known as non-linear Compton scattering and multiphoton Compton scattering, is the scattering of multiple low-energy photons, given by an intense electromagnetic field, in a high-energy photon (X ...
mechanism when interacting with the laser pulse. Still interacting with the laser, the photons then turn into multiphoton Breit–Wheeler electron–positron pairs. This method has been considered In 1997 at the
Stanford Linear Accelerator Center SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Departme ...
. Researchers were able to conduct the multiphoton Breit–Wheeler process using electrons to first create high-energy photons, which then underwent multiple collisions to produce electrons and positrons, all within same chamber. Electrons were accelerated in the linear accelerator to an energy of 46.6 GeV before being sent head-on to a Neodymium (Nd:glass) lineary polarized laser of intensity 1018 W/cm2 (maximal
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
amplitude of around 6×109 V/m), of
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
527 nanometers and duration 1.6 picoseconds. In this configurations, it has been estimated that photons of energy up to 29 GeV were generated. This led to the yield of 106 ±14 positrons with a broad energy spectrum in the GeV level (peak around 13 GeV). The latter experiment may be reproduced in the future at
SLAC SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Departm ...
with more powerful present laser technologies. The use of higher laser intensities (1020 W/cm2 is now easily achievable with turnkey short-pulse
titanium-sapphire laser Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research beca ...
solutions) would significantly enhance process efficiencies (inverse nonlinear Compton and nonlinear Breit–Wheeler pair creation) leading to higher antimatter production at several orders of magnitude. It could enable to perform high-resolution measurements as well as to characterize additional mass-shift, nonlinear and spin effects. The extreme intensities expected to be available on the upcoming multi-petawatt laser systems will allow all-optical, laser–electron collision schemes. In an all-optical configuration, the electron beam is generated from the laser interaction with a gas jet in the so-called laser wakefield acceleration regime. The electron bunch is made to interact with a second high-power laser in order to study QED processes. The feasibility of an all-optical multiphoton Breit–Wheeler pair production scheme has been first demonstrated theoretically in. This scheme is therefore restricted to multi-beam short-pulse extreme-intensity laser facilities, as will be the case of the CILEX-Apollon and
ELI Eli most commonly refers to: * Eli (name), a given name, nickname and surname * Eli (biblical figure) Eli or ELI may also refer to: Film * ''Eli'' (2015 film), a Tamil film * ''Eli'' (2019 film), an American horror film Music * ''Eli'' (Jan ...
systems (CPA titanium sapphire technology at 0.8 micrometer, duration of 15–30 femtoseconds). The generation of electron beams of few GeV and few nanocoulomb is possible with a first laser of 1 petawatt combined with the use of tuned and optimized gas-jet density profiles such as two-step profiles. Strong pair generation can be achieved by colliding head-on this electron beam with a second laser of intensity above 1022 W/cm2. In this configuration at this level of intensity, theoretical studies predict that several hundreds of pico-Coulombs of antimatter could be produced. This experimental setup could even be one of the most prolific positron yield factory. This all-optical scenario may be preliminary tested with lower laser intensities of the order of 1021 W/cm2. In July 2021 evidence consistent with the process was reported by the
STAR detector The STAR detector (for Solenoidal Tracker at RHIC) is one of the four experiments at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory, United States. The primary scientific objective of STAR is to study the formation an ...
one of the four experiments at the
Relativistic Heavy Ion Collider The Relativistic Heavy Ion Collider (RHIC ) is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by an ...
although it was unclear if it was due to massless photons or massive virtual photons,
vacuum birefringence A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
was also studied obtaining evidence enough to claim the first known observation of the process


See also

*
Two-photon physics Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the inten ...


References

__FORCETOC__ {{DEFAULTSORT:Breit-Wheeler process Photonics Hypothetical processes Quantum electrodynamics