HOME

TheInfoList



OR:

In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices ...
, a constrained generalized inverse is obtained by solving a system of linear equations with an additional constraint that the solution is in a given subspace. One also says that the problem is described by a system of constrained linear equations. In many practical problems, the solution x of a linear system of equations : Ax=b\qquad (\textA\in\R^\text b\in\R^m) is acceptable only when it is in a certain linear subspace L of \R^m. In the following, the
orthogonal projection In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it wer ...
on L will be denoted by P_L. Constrained system of linear equations :Ax=b\qquad x\in L has a solution if and only if the unconstrained system of equations :(A P_L) x = b\qquad x\in\R^m is solvable. If the subspace L is a proper subspace of \R^m, then the matrix of the unconstrained problem (A P_L) may be singular even if the system matrix A of the constrained problem is invertible (in that case, m=n). This means that one needs to use a generalized inverse for the solution of the constrained problem. So, a generalized inverse of (A P_L) is also called a L-''constrained pseudoinverse'' of A. An example of a pseudoinverse that can be used for the solution of a constrained problem is the Bott–Duffin inverse of A constrained to L, which is defined by the equation :A_L^:=P_L(A P_L + P_)^, if the inverse on the right-hand-side exists. Matrices {{Linear-algebra-stub