HOME

TheInfoList



OR:

Explosive cyclogenesis (also referred to as a weather bomb, meteorological bomb, explosive development, bomb cyclone, or bombogenesis) is the rapid deepening of an extratropical cyclonic low-pressure area. The change in pressure needed to classify something as explosive cyclogenesis is latitude dependent. For example, at 60° latitude, explosive cyclogenesis occurs if the central pressure decreases by or more in 24 hours. This is a predominantly maritime, winter event, but also occurs in continental settings, This process is the extratropical equivalent of the tropical rapid deepening. Although their cyclogenesis is entirely different from that of tropical cyclones, bomb cyclones can produce winds of , the same order as the first categories of the Saffir–Simpson scale, and yield heavy precipitation. Even though only a minority of the bomb cyclones become so strong, some weaker ones have also caused significant damage.


History

In the 1940s and 1950s, meteorologists at the Bergen School of Meteorology began informally calling some storms that grew over the sea "bombs" because they developed with a great ferocity rarely seen over land. By the 1970s, the terms "explosive cyclogenesis" and even "meteorological bombs" were being used by MIT professor Fred Sanders (building on work from the 1950s by Tor Bergeron), who brought the term into common usage in a 1980 article in the '' Monthly Weather Review''. In 1980, Sanders and his colleague John Gyakum defined a "bomb" as an
extratropical cyclone Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable of ...
that deepens by at least  mb in 24 hours, where represents latitude. This is based on the definition, standardised by Bergeron, for explosive development of a cyclone at 60°N as deepening by 24 mb in 24 hours. Sanders and Gyakum noted that an equivalent intensification is dependent on latitude: at the poles this would be a drop in pressure of 28 mb/24 hours, while at 25 degrees latitude it would be only 12 mb/24 hours. All these rates qualify for what Sanders and Gyakum called "1 bergeron". Sanders' and Gyakum's 1980 definition, which is used in the American Meteorological Society's Glossary of Meteorology, said that the "bomb" was "predominantly" a "maritime, cold season event". In October 2010, an unusual weather system that reached the strength of a
Category 3 hurricane Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) *C ...
and spanned 31 states in the United States and six Canadian provinces, underwent bombogenesis, according to Environment Canada. Severe weather warnings included "tornadoes, blustery blizzards, powerful gales, wind-driven rains, heavy snows and thunderstorms". The storm had the greatest impact in the Canadian province of Manitoba with the city of Winnipeg setting an "all-time record for its lowest-ever barometric pressure". In early 2014 in the North Atlantic, fourteen wind events out of twenty that had reached hurricane-force, underwent bombogenesis, the process that creates a bomb cyclone, according to National Oceanic and Atmospheric Administration (NOAA). NOAA said that bombogenesis "occurs when a midlatitude cyclone rapidly intensifies, dropping at least 24 millibars over 24 hours." A bomb cyclone developed near the Great Lakes during the late December 2022 rapidly intensifying North American winter storm, when large, frigid, polar air masses from the polar vortex, propelled by high-pressure systems in Canada, met with the low-pressure mass of very warm air, resulting in a sharp and rapid drop in atmospheric pressure. It reached the criteria to be classified as bombogenesis when the atmospheric pressure dropped 24 millibars within 24 hours. The US National Weather Service's meteorologist, John Moore, reported a sharp pressure difference or gradient from to about . As warm air was drawn into the storm, the winds got stronger, and air pressure and temperatures fell rapidly. The US National Weather Service reported a drop in temperature of 26 degrees in Montana in three minutes on December 24. The storm hit "large swaths" of North America leaving 55 fatalities in the United States and four in Canada. Strong winds and blizzard-like conditions intensified in the Northern Plains. With no Canadian province and territory spared , there was a total of 425 emergency weather warnings on December 24an "almost unprecedented number". Extreme conditions included wind chill readings of , heavy snow, "storm surges, ice fog, strong winds", and "ice bombs"in reference to chunks of accumulated ice that threatens to fall on cars when crossing certain bridges. The storm in the United States was described as "historic" by the NPR. It affected about 60% of the population, and resulted in the issuance of "one of the greatest extents of winter weather warnings and advisories ever". At its peak on December 24, 1.5 million households in the United States and 500,000 in Canada were without electricity.


Formation

Baroclinic instability has been cited as one of the principal mechanisms for the development of most explosively deepening cyclones. However, the relative roles of baroclinic and diabatic processes in explosive deepening of extratropical cyclones have been subject to debate (citing case studies) for a long time. Other factors include the relative position of a 500-hPa trough and thickness patterns, deep
tropospheric The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From ...
frontogenetic processes which happen both upstream and downstream of the surface low, the influence of air–sea interaction, and latent heat release.


Regions and motion

The four most active regions where extratropical explosive cyclogenesis occurs in the world are the Northwest Pacific, the North Atlantic, the Southwest Pacific, and the South Atlantic. In the
Northern Hemisphere The Northern Hemisphere is the half of Earth that is north of the Equator. For other planets in the Solar System, north is defined as being in the same celestial hemisphere relative to the invariable plane of the solar system as Earth's Nort ...
the maximum frequency of explosively deepening cyclones is found within or to the north of the Atlantic
Gulf Stream The Gulf Stream, together with its northern extension the North Atlantic Current, North Atlantic Drift, is a warm and swift Atlantic Ocean, Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida a ...
and Kuroshio Current in the western Pacific, and in the Southern Hemisphere it is found with Australian east coast lows above the East Australian Current, which shows the importance of air-sea interaction in initiating and rapidly developing extratropical cyclones. Explosively deepening cyclones south of 50°S often show equator-ward movement, in contrast with the poleward motion of most Northern Hemisphere bombs. Over the year, 45 cyclones on average in the Northern Hemisphere and 26 in the Southern Hemisphere develop explosively, mostly in the respective hemisphere's winter time. Less seasonality has been noticed in bomb cyclogenesis occurrences in the Southern Hemisphere.


Other uses of "weather bomb"

The term "weather bomb" is popularly used in New Zealand to describe dramatic or destructive weather events. Rarely are the events actual instances of explosive cyclogenesis, as the rapid deepening of low pressure areas is rare around New Zealand. This use of "bomb" may lead to confusion with the more strictly defined meteorological term. In
Japan Japan ( ja, 日本, or , and formally , ''Nihonkoku'') is an island country in East Asia. It is situated in the northwest Pacific Ocean, and is bordered on the west by the Sea of Japan, while extending from the Sea of Okhotsk in the north ...
, the term is used both academically and commonly to refer to an extratropical cyclone which meets the meteorological "bomb" conditions. The term "bomb" may be somewhat controversial. When European researchers protested that it was a rather warlike term, Fred Sanders, the coauthor of the paper which introduced the meteorological usage quipped: "So why are you using the term 'front'?".


See also

* Cyclogenesis, extratropical cyclones * Extratropical cyclone, formation * Notable non-tropical pressures over the North Atlantic *
Superstorm A superstorm is a large, unusually-occurring, destructive storm without another distinct meteorological classification, such as hurricane or blizzard. Origin and usage Before the early 1990s, the phrases " storm of the century" or "perfect st ...


References


External links


"What is a weather 'bomb'?"
€” BBC Weather
Bomb Cyclone Data
of the Northwest Pacific Ocean
Lorenz Energy Cycle - Linking Weather and Climate (MET 6155)
{{Extratropical cyclones Extratropical cyclones Synoptic meteorology and weather