In
computer programming
Computer programming or coding is the composition of sequences of instructions, called computer program, programs, that computers can follow to perform tasks. It involves designing and implementing algorithms, step-by-step specifications of proc ...
, a block or code block or block of code is a lexical structure of
source code
In computing, source code, or simply code or source, is a plain text computer program written in a programming language. A programmer writes the human readable source code to control the behavior of a computer.
Since a computer, at base, only ...
which is grouped together. Blocks consist of one or more
declarations and
statements. A
programming language
A programming language is a system of notation for writing computer programs.
Programming languages are described in terms of their Syntax (programming languages), syntax (form) and semantics (computer science), semantics (meaning), usually def ...
that permits the creation of blocks, including blocks
nested within other blocks, is called a block-structured programming language. Blocks are fundamental to
structured programming Structured programming is a programming paradigm aimed at improving the clarity, quality, and development time of a computer program by making specific disciplined use of the structured control flow constructs of selection ( if/then/else) and repet ...
, where
control structures are formed from blocks.
Blocks have two functions: to group statements so that they can be treated as one statement, and to define
scopes for
names
A name is a term used for identification by an external observer. They can identify a class or category of things, or a single thing, either uniquely, or within a given context. The entity identified by a name is called its referent. A person ...
to distinguish them from the same name used elsewhere. In a block-structured programming language, the objects named in outer blocks are visible inside inner blocks, unless they are
masked by an
object declared with the same name.
History
Ideas of block structure were developed in the 1950s during the development of the first
autocodes, and were formalized in the
Algol 58 and
Algol 60
ALGOL 60 (short for ''Algorithmic Language 1960'') is a member of the ALGOL family of computer programming languages. It followed on from ALGOL 58 which had introduced code blocks and the begin and end pairs for delimiting them, representing a ...
reports. Algol 58 introduced the notion of the "compound statement", which was related solely to
control flow.
The subsequent ''Revised Report'' which described the syntax and semantics of Algol 60 introduced the notion of a block and
block scope, with a block consisting of " A sequence of declarations followed by a sequence of statements and enclosed between begin and end..." in which "
ery declaration appears in a block in this way and is valid only for that block."
Syntax
Blocks use different syntax in different languages. Several broad families are:
* the
ALGOL
ALGOL (; short for "Algorithmic Language") is a family of imperative computer programming languages originally developed in 1958. ALGOL heavily influenced many other languages and was the standard method for algorithm description used by the ...
family in which blocks are delimited by the keywords "
begin
" and "
end
" or equivalent. In
C, blocks are delimited by curly braces - "
".
ALGOL 68
ALGOL 68 (short for ''Algorithmic Language 1968'') is an imperative programming language member of the ALGOL family that was conceived as a successor to the ALGOL 60 language, designed with the goal of a much wider scope of application and ...
uses parentheses.
* Parentheses - "
(
" and "
)
", are used in the MS-DOS
batch language
*
indentation, as in
Python and
Haskell
Haskell () is a general-purpose, statically typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell pioneered several programming language ...
*
s-expressions with a syntactic keyword such as
prog
or
let
(as in the
Lisp
Lisp (historically LISP, an abbreviation of "list processing") is a family of programming languages with a long history and a distinctive, fully parenthesized Polish notation#Explanation, prefix notation.
Originally specified in the late 1950s, ...
family)
* In 1968 (with
ALGOL 68
ALGOL 68 (short for ''Algorithmic Language 1968'') is an imperative programming language member of the ALGOL family that was conceived as a successor to the ALGOL 60 language, designed with the goal of a much wider scope of application and ...
), then in
Edsger W. Dijkstra
Edsger Wybe Dijkstra ( ; ; 11 May 1930 – 6 August 2002) was a Dutch computer scientist, programmer, software engineer, mathematician, and science essayist.
Born in Rotterdam in the Netherlands, Dijkstra studied mathematics and physics and the ...
's 1974
Guarded Command Language the conditional and iterative code block are alternatively terminated with the block reserved word ''reversed'': e.g.
if ~ then ~ elif ~ else ~ fi
,
case ~ in ~ out ~ esac
and
for ~ while ~ do ~ od
Limitations
Some languages which support blocks with declarations do not fully support all declarations; for instance many C-derived languages do not permit a function definition within a block (
nested functions). And unlike its ancestor Algol, Pascal does not support the use of blocks with their own declarations inside the begin and end of an existing block, only compound statements enabling sequences of statements to be grouped together in if, while, repeat and other control statements.
Basic semantics
The semantic meaning of a block is twofold. Firstly, it provides the programmer with a way for creating arbitrarily large and complex structures that can be treated as units. Secondly, it enables the programmer to limit the scope of variables and sometimes other objects that have been declared.
In early languages such as
Fortran IV and
BASIC
Basic or BASIC may refer to:
Science and technology
* BASIC, a computer programming language
* Basic (chemistry), having the properties of a base
* Basic access authentication, in HTTP
Entertainment
* Basic (film), ''Basic'' (film), a 2003 film
...
, there were no statement blocks or control structures other than simple forms of loops. Conditionals were implemented using conditional
goto statements:
C LANGUAGE: ANSI STANDARD FORTRAN 66
C INITIALIZE VALUES TO BE CALCULATED
PAYSTX = .FALSE.
PAYSST = .FALSE.
TAX = 0.0
SUPTAX = 0.0
C SKIP TAX DEDUCTION IF EMPLOYEE EARNS LESS THAN TAX THRESHOLD
IF (WAGES .LE. TAXTHR) GOTO 100
PAYSTX = .TRUE.
TAX = (WAGES - TAXTHR) * BASCRT
C SKIP SUPERTAX DEDUCTION IF EMPLOYEE EARNS LESS THAN SUPERTAX THRESHOLD
IF (WAGES .LE. SUPTHR) GOTO 100
PAYSST = .TRUE.
SUPTAX = (WAGES - SUPTHR) * SUPRAT
100 TAXED = WAGES - TAX - SUPTAX
The logical structure of the program is not reflected in the language, and analyzing when a given statement is executed can be difficult.
Blocks allow the programmer to treat a group of statements as a unit, and the default values which had to appear in initialization in this style of programming can, with a block structure, be placed closer to the decision:
if wages > tax_threshold then
begin
paystax := true;
tax := (wages - tax_threshold) * tax_rate
if wages > supertax_threshold then begin
pays_supertax := true;
supertax := (wages - supertax_threshold) * supertax_rate
end
else begin
pays_supertax := false;
supertax := 0
end
end
else begin
paystax := false; pays_supertax := false;
tax := 0; supertax := 0
end;
taxed := wages - tax - supertax;
Use of blocks in the above fragment of
Pascal clarifies the programmer's intent, and enables combining the resulting blocks into a nested hierarchy of
conditional statements. The structure of the code reflects the programmer's thinking more closely, making it easier to understand and modify.
The above source code can be made even clearer by taking the inner if statement out of the outer one altogether, placing the two blocks one after the other to be executed consecutively. Semantically there is little difference in this case, and the use of block structure, supported by indenting for readability, makes it easy for the programmer to refactor the code.
In primitive languages, variables had broad scope. For instance, an integer variable called IEMPNO might be used in one part of a Fortran subroutine to denote an employee social security number (ssn), but during maintenance work on the same subroutine, a programmer might accidentally use the same variable, IEMPNO, for a different purpose, and this could result in a bug that was difficult to trace. Block structure makes it easier for programmers to control scope to a minute level.
;; Language: R5RS Standard Scheme
(let ((empno (ssn-of employee-name)))
(while (is-manager empno)
(let ((employees (length (underlings-of empno))))
(printf "~a has ~a employees working under him:~%" employee-name employees)
(for-each
(lambda (empno)
;; Within this lambda expression the variable empno refers to the ssn
;; of an underling. The variable empno in the outer expression,
;; referring to the manager's ssn, is shadowed.
(printf "Name: ~a, role: ~a~%"
(name-of empno)
(role-of empno)))
(underlings-of empno)))))
In the above
Scheme fragment, empno is used to identify both the manager and their underlings each by their respective ssn, but because the underling ssn is declared within an inner block it does not interact with the variable of the same name that contains the manager's ssn. In practice, considerations of clarity would probably lead the programmer to choose distinct variable names, but they have the choice and it is more difficult to introduce a bug inadvertently.
Hoisting
In some languages, a variable can be declared at function scope even within enclosed blocks. For example, in JavaScript, variables declared with
var
have function scope.
See also
*
Basic block
In compiler construction, a basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit. This restricted form makes a basic block highly amenable to analysis. Compilers usually decom ...
*
Block scope
*
Closure (computer programming)
*
Control flow
References
{{DEFAULTSORT:Statement Block
Programming constructs