Bitruncated 6-cube
   HOME

TheInfoList



OR:

In six-dimensional
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a truncated 6-cube (or truncated hexeract) is a convex
uniform 6-polytope In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes. The complete set of convex uniform 6-polytopes has not been determined, bu ...
, being a
truncation In mathematics and computer science, truncation is limiting the number of digits right of the decimal point. Truncation and floor function Truncation of positive real numbers can be done using the floor function. Given a number x \in \mathbb ...
of the regular
6-cube In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It ...
. There are 5 truncations for the 6-cube. Vertices of the truncated 6-cube are located as pairs on the edge of the 6-cube. Vertices of the bitruncated 6-cube are located on the square faces of the 6-cube. Vertices of the tritruncated 6-cube are located inside the cubic cells of the 6-cube.


Truncated 6-cube


Alternate names

* Truncated hexeract (Acronym: tox) (Jonathan Bowers)


Construction and coordinates

The truncated 6-cube may be constructed by truncating the vertices of the
6-cube In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It ...
at 1/(\sqrt+2) of the edge length. A regular
5-simplex In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-s ...
replaces each original vertex. The
Cartesian coordinate A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s of the vertices of a ''truncated 6-cube'' having edge length 2 are the permutations of: :\left(\pm1,\ \pm(1+\sqrt),\ \pm(1+\sqrt),\ \pm(1+\sqrt),\ \pm(1+\sqrt),\ \pm(1+\sqrt)\right)


Images


Related polytopes

The '' truncated
6-cube In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It ...
'', is fifth in a sequence of truncated
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
s:


Bitruncated 6-cube


Alternate names

* Bitruncated hexeract (Acronym: botox) (Jonathan Bowers)


Construction and coordinates

The
Cartesian coordinate A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s of the vertices of a ''bitruncated 6-cube'' having edge length 2 are the permutations of: :\left(0,\ \pm1,\ \pm2,\ \pm2,\ \pm2,\ \pm2 \right)


Images


Related polytopes

The '' bitruncated
6-cube In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It ...
'' is fourth in a sequence of bitruncated
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
s:


Tritruncated 6-cube


Alternate names

* Tritruncated hexeract (Acronym: xog) (Jonathan Bowers)Klitzing, (o3o3x3x3o4o - xog)


Construction and coordinates

The
Cartesian coordinate A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s of the vertices of a ''tritruncated 6-cube'' having edge length 2 are the permutations of: :\left(0,\ 0,\ \pm1,\ \pm2,\ \pm2,\ \pm2 \right)


Images


Related polytopes


Related polytopes

These polytopes are from a set of 63
Uniform 6-polytope In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes. The complete set of convex uniform 6-polytopes has not been determined, bu ...
s generated from the B6
Coxeter plane In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there a ...
, including the regular
6-cube In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It ...
or
6-orthoplex In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 vertices, 60 edges, 160 triangle faces, 240 tetrahedron cells, 192 5-cell ''4-faces'', and 64 ''5-faces''. It has two constructed forms, the first being regular with ...
.


Notes


References

*
H.S.M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. * o3o3o3o3x4x - tox, o3o3o3x3x4o - botox, o3o3x3x3o4o - xog


External links

*
Polytopes of Various Dimensions


{{Polytopes 6-polytopes