In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, a truncated 5-cell is a
uniform 4-polytope
In geometry, a uniform 4-polytope (or uniform polychoron) is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.
There are 47 non-prismatic convex uniform 4-polytopes. Th ...
(4-dimensional uniform
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
) formed as the
truncation of the regular
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
.
There are two degrees of truncations, including a
bitruncation
In geometry, a bitruncation is an operation on regular polytopes. It represents a truncation beyond rectification. The original edges are lost completely and the original faces remain as smaller copies of themselves.
Bitruncated regular poly ...
.
Truncated 5-cell
The truncated 5-cell, truncated pentachoron or truncated 4-simplex is bounded by 10
cells: 5
tetrahedra
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
, and 5
truncated tetrahedra
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncating all 4 vertices of a regular tetrahedron ...
. Each vertex is surrounded by 3 truncated tetrahedra and one tetrahedron; the
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
is an elongated tetrahedron.
Construction
The truncated 5-cell may be constructed from the
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
by
truncating its vertices at 1/3 of its edge length. This transforms the 5 tetrahedral cells into truncated tetrahedra, and introduces 5 new tetrahedral cells positioned near the original vertices.
Structure
The truncated tetrahedra are joined to each other at their hexagonal faces, and to the tetrahedra at their triangular faces.
Seen in a
configuration matrix, all incidence counts between elements are shown. The diagonal
f-vector Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.
Research in polyhedral co ...
numbers are derived through the
Wythoff construction
In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction.
Construction process
...
, dividing the full group order of a subgroup order by removing one mirror at a time.
Projections
The truncated tetrahedron-first Schlegel diagram projection of the truncated 5-cell into 3-dimensional space has the following structure:
* The projection envelope is a
truncated tetrahedron
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncation (geometry), truncating all 4 vertices of ...
.
* One of the truncated tetrahedral cells project onto the entire envelope.
* One of the tetrahedral cells project onto a tetrahedron lying at the center of the envelope.
* Four flattened tetrahedra are joined to the triangular faces of the envelope, and connected to the central tetrahedron via 4 radial edges. These are the images of the remaining 4 tetrahedral cells.
* Between the central tetrahedron and the 4 hexagonal faces of the envelope are 4 irregular truncated tetrahedral volumes, which are the images of the 4 remaining truncated tetrahedral cells.
This layout of cells in projection is analogous to the layout of faces in the face-first projection of the truncated tetrahedron into 2-dimensional space. The truncated 5-cell is the 4-dimensional analogue of the truncated tetrahedron.
Images
Image:Truncated pentachoron net.png, net
Net or net may refer to:
Mathematics and physics
* Net (mathematics), a filter-like topological generalization of a sequence
* Net, a linear system of divisors of dimension 2
* Net (polyhedron), an arrangement of polygons that can be folded up ...
Image:Truncated simplex stereographic.png, stereographic projection
(centered on truncated tetrahedron
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncation (geometry), truncating all 4 vertices of ...
)
Alternate names
* Truncated pentatope
* Truncated
4-simplex
* Truncated pentachoron (Acronym: tip) (Jonathan Bowers)
Coordinates
The
Cartesian coordinate
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s for the vertices of an origin-centered truncated 5-cell having edge length 2 are:
More simply, the vertices of the ''truncated 5-cell'' can be constructed on a
hyperplane in 5-space as permutations of (0,0,0,1,2) ''or'' of (0,1,2,2,2). These coordinates come from positive
orthant
In geometry, an orthant or hyperoctant is the analogue in ''n''-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions.
In general an orthant in ''n''-dimensions can be considered the intersection of ''n'' mutua ...
facets of the
truncated pentacross and
bitruncated penteract respectively.
Related polytopes
The convex hull of the truncated 5-cell and its dual (assuming that they are congruent) is a nonuniform polychoron composed of 60 cells: 10
tetrahedra
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
, 20
octahedra
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet a ...
(as triangular antiprisms), 30
tetrahedra
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
(as tetragonal disphenoids), and 40 vertices. Its vertex figure is a hexakis
triangular cupola
In geometry, the triangular cupola is one of the Johnson solids (). It can be seen as half a cuboctahedron.
Formulae
The following formulae for the volume (V), the surface area (A) and the height (H) can be used if all faces are regular, ...
.
Vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
Bitruncated 5-cell
The
bitruncated 5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
(also called a bitruncated pentachoron, decachoron and 10-cell) is a 4-dimensional
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
, or
4-polytope
In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), an ...
, composed of 10
cells in the shape of
truncated tetrahedra
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncating all 4 vertices of a regular tetrahedron ...
.
Topologically, under its highest symmetry,
3,3,3
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional space, four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tet ...
, there is only one geometrical form, containing 10 uniform truncated tetrahedra. The hexagons are always regular because of the polychoron's inversion symmetry, of which the regular hexagon is the only such case among ditrigons (an isogonal hexagon with 3-fold symmetry).
E. L. Elte identified it in 1912 as a semiregular polytope.
Each hexagonal face of the truncated tetrahedra is joined in complementary orientation to the neighboring truncated tetrahedron. Each edge is shared by two hexagons and one triangle. Each vertex is surrounded by 4 truncated tetrahedral cells in a
tetragonal disphenoid
In geometry, a disphenoid () is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same sh ...
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
.
The bitruncated 5-cell is the
intersection of two
pentachora in dual configuration. As such, it is also the intersection of a
penteract
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.
It is represented by Schläfli symbol or , constructed as 3 tesseract ...
with the hyperplane that bisects the penteract's long diagonal orthogonally. In this sense it is a 4-dimensional analog of the
regular octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
(intersection of regular tetrahedra in dual configuration /
tesseract
In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of e ...
bisection on long diagonal) and the regular hexagon (equilateral triangles / cube). The 5-dimensional analog is the
birectified 5-simplex, and the
-dimensional analog is the polytope whose
Coxeter–Dynkin diagram
In geometry, a Coxeter–Dynkin diagram (or Coxeter diagram, Coxeter graph) is a graph with numerically labeled edges (called branches) representing the spatial relations between a collection of mirrors (or reflecting hyperplanes). It describe ...
is linear with rings on the middle one or two nodes.
The bitruncated 5-cell is one of the two non-regular convex
uniform 4-polytope
In geometry, a uniform 4-polytope (or uniform polychoron) is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.
There are 47 non-prismatic convex uniform 4-polytopes. Th ...
s which are
cell-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
. The other is the
bitruncated 24-cell
In geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell.
There are two degrees of truncations, including a bitruncation.
Truncated 24-cell
The truncated 24-cel ...
, which is composed of 48 truncated cubes.
Symmetry
This 4-polytope has a higher extended pentachoric symmetry (2×A
4,
3,3,3
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional space, four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tet ...
), doubled to order 240, because the element corresponding to any element of the underlying 5-cell can be exchanged with one of those corresponding to an element of its dual.
Alternative names
* Bitruncated 5-cell (
Norman W. Johnson)
* 10-cell as a
cell-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
4-polytope
* Bitruncated pentachoron
* Bitruncated pentatope
* Bitruncated
4-simplex
* Decachoron (Acronym: deca) (Jonathan Bowers)
Images
Coordinates
The
Cartesian coordinate
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s of an origin-centered bitruncated 5-cell having edge length 2 are:
More simply, the vertices of the bitruncated 5-cell can be constructed on a
hyperplane in 5-space as permutations of (0,0,1,2,2). These represent positive
orthant
In geometry, an orthant or hyperoctant is the analogue in ''n''-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions.
In general an orthant in ''n''-dimensions can be considered the intersection of ''n'' mutua ...
facets of the
bitruncated pentacross. Another 5-space construction, centered on the origin are all 20 permutations of (-1,-1,0,1,1).
Related polytopes
The
bitruncated 5-cell can be seen as the intersection of two regular
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
s in dual positions. = ∩ .
Related regular skew polyhedron
The
regular skew polyhedron
In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra ...
, , exists in 4-space with 4 hexagonal around each vertex, in a zig-zagging nonplanar vertex figure. These hexagonal faces can be seen on the bitruncated 5-cell, using all 60 edges and 30 vertices. The 20 triangular faces of the bitruncated 5-cell can be seen as removed. The dual regular skew polyhedron, , is similarly related to the square faces of the
runcinated 5-cell
In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination (a 3rd order truncation, up to face-planing) of the regular 5-cell.
There are 3 unique degrees of runcinations of the 5-cell, including with pe ...
.
Disphenoidal 30-cell
The disphenoidal 30-cell is the
dual of the
bitruncated 5-cell. It is a 4-dimensional
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
(or
polychoron
In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), an ...
) derived from the
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
. It is the convex hull of two
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
s in opposite orientations.
Being the dual of a uniform polychoron, it is
cell-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
, consisting of 30 congruent
tetragonal disphenoids. In addition, it is
vertex-transitive
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in ...
under the group Aut(A
4).
Related polytopes
These polytope are from a set of 9
uniform 4-polytope
In geometry, a uniform 4-polytope (or uniform polychoron) is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.
There are 47 non-prismatic convex uniform 4-polytopes. Th ...
constructed from the
,3,3Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refle ...
.
References
*
H.S.M. Coxeter:
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973
** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'',
ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'',
ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'',
ath. Zeit. 200 (1988) 3-45*
Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
, ''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999, p. 88 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.)
**Coxeter, H. S. M. ''Regular Skew Polyhedra in Three and Four Dimensions.'' Proc. London Math. Soc. 43, 33-62, 1937.
*
Norman Johnson ''Uniform Polytopes'', Manuscript (1991)
** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966)
*
* x3x3o3o - tip, o3x3x3o - deca
;Specific
{{Polytopes
4-polytopes