Biosynthetic Gene Cluster
   HOME

TheInfoList



OR:

Metabolic gene clusters or biosynthetic gene clusters are tightly linked sets of mostly non-homologous genes participating in a common, discrete metabolic pathway. The genes are in physical vicinity to each other on the genome, and their expression is often coregulated. Metabolic gene clusters are common features of
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
l and most
fungal A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from th ...
genomes, and are less often found in other organisms. They are most widely known for producing
secondary metabolite Secondary metabolites, also called specialised metabolites, toxins, secondary products, or natural products, are organic compounds produced by any lifeform, e.g. bacteria, fungi, animals, or plants, which are not directly involved in the norma ...
s, which are the source or basis of most
pharmaceutical A medication (also called medicament, medicine, pharmaceutical drug, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy (pharmacotherapy) is an important part of the medical field an ...
compounds, natural
toxin A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849 ...
s, and chemical communication and chemical warfare between organisms. Metabolic gene clusters are also involved in nutrient acquisition, toxin degradation, antimicrobial resistance, and vitamin biosynthesis. Given all these properties of metabolic gene clusters, they play a key role in shaping microbial ecosystems, including
microbiome A microbiome () is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps ''et al.'' as "a characteristic microbial community occupying a reasonably wel ...
-host interactions. Thus several
computational genomics Computational genomics refers to the use of computational and statistical analysis to decipher biology from genome sequences and related data, including both DNA and RNA sequence as well as other "post-genomic" data (i.e., experimental data obtai ...
tools have been developed to predict metabolic gene clusters.


Databases

MIBiG, BiG-FAM


Bioinformatic tools


Tools based on rules

Bioinformatic tools have been developed to predict, and determine the abundance and expression of, this kind of gene cluster in microbiome samples, from metagenomic data. Since the size of metagenomic data is considerable, filtering and clusterization thereof are important parts of these tools. These processes can consist of dimensionality -reduction techniques, such as
Minhash In computer science and data mining, MinHash (or the min-wise independent permutations locality sensitive hashing scheme) is a technique for quickly estimating how Similarity measure, similar two sets are. The scheme was invented by , and initially ...
, and clusterization algorithms such as
k-medoids The -medoids problem is a clustering problem similar to -means. The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM algorithm. Both the -means and -medoids algorithms are partitional (breaking the dataset up into group ...
and affinity propagation. Also several metrics and similarities have been developed to compare them. Genome mining for biosynthetic gene clusters (BGCs) has become an integral part of natural product discovery. The >200,000 microbial genomes now publicly available hold information on abundant novel chemistry. One way to navigate this vast genomic diversity is through comparative analysis of homologous BGCs, which allows identification of cross-species patterns that can be matched to the presence of metabolites or biological activities. However, current tools are hindered by a bottleneck caused by the expensive network-based approach used to group these BGCs into gene cluster families (GCFs). BiG-SLiCE (Biosynthetic Genes Super-Linear Clustering Engine), a tool designed to cluster massive numbers of BGCs. By representing them in Euclidean space, BiG-SLiCE can group BGCs into GCFs in a non-pairwise, near-linear fashion. Satria et. al, 2021 across BiG-SLiCE demonstrate the utility of such analyses by reconstructing a global map of secondary metabolic diversity across taxonomy to identify uncharted biosynthetic potential, opens up new possibilities to accelerate natural product discovery and offers a first step towards constructing a global and searchable interconnected network of BGCs. As more genomes are sequenced from understudied taxa, more information can be mined to highlight their potentially novel chemistry.


tools based on machine learning


Evolution

The origin and evolution of metabolic gene clusters have been debated since the 1990s. It has since been demonstrated that metabolic gene clusters can arise in a genome by genome rearrangement, gene duplication, or
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). H ...
, and some metabolic clusters have evolved convergently in multiple species. Horizontal gene cluster transfer has been linked to ecological niches in which the encoded pathways are thought to provide a benefit. It has been argued that clustering of genes for ecological functions results from reproductive trends among organisms, and goes on to contribute to accelerated adaptation by increasing refinement of complex functions in the pangenome of a population.


References

{{reflist Gene clusters