Bioenergy with carbon capture and storage (BECCS) is the process of extracting
bioenergy
Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms biom ...
from
biomass
Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bi ...
and
capturing and storing the carbon, thereby
removing it from the atmosphere.
The carbon in the biomass comes from the
greenhouse gas
A greenhouse gas (GHG or GhG) is a gas that Absorption (electromagnetic radiation), absorbs and Emission (electromagnetic radiation), emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse ...
carbon dioxide
Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
(CO
2) which is
extracted from the atmosphere by the biomass when it grows. Energy is extracted in useful forms (electricity, heat, biofuels, etc.) as the biomass is utilized through combustion, fermentation, pyrolysis or other conversion methods. Some of the carbon in the biomass is converted to CO
2 or
biochar
Biochar is the lightweight black residue, made of carbon and Ash (analytical chemistry),
ashes, remaining after the pyrolysis of biomass. Biochar is defined by the International Biochar Initiative as "the solid material obtained from the th ...
which can then be stored by
geologic sequestration or land application, respectively, enabling
carbon dioxide removal
Carbon dioxide removal (CDR), also known as negative emissions, is a process in which carbon dioxide gas () is removed from the atmosphere and sequestered for long periods of time. Similarly, greenhouse gas removal (GGR) or negative greenho ...
(CDR) and making BECCS a negative emissions technology (NET).
The potential range of negative emissions from BECCS was estimated to be zero to 22
giga
Giga ( or ) is a unit prefix in the metric system denoting a factor of a short-scale billion or long-scale milliard (109 or ). It has the symbol G.
''Giga'' is derived from the Greek word (''gígas''), meaning "giant". The ''Oxford English Dic ...
tonnes
The tonne ( or ; symbol: t) is a unit of mass equal to 1000 kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton ( United States ...
per year. , five facilities around the world were actively using BECCS technologies and were capturing approximately 1.5 million tonnes per year of CO
2. Wide deployment of BECCS is constrained by cost and availability of biomass.
Negative emission
The main appeal of BECCS is in its ability to result in negative emissions of
CO2. The capture of carbon dioxide from
bioenergy
Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms biom ...
sources effectively removes CO
2 from the atmosphere.
Bioenergy is derived from biomass which is a
renewable energy source
Renewable energy is energy that is collected from renewable resources that are naturally replenished on a Orders of magnitude (time), human timescale. It includes sources such as Solar power, sunlight, wind power, wind, the movement of Hydropo ...
and serves as a carbon sink during its growth. During industrial processes, the biomass combusted or processed re-releases the CO
2 into the atmosphere.
Carbon capture and storage
Carbon capture and storage (CCS) or carbon capture and sequestration is the process of capturing carbon dioxide (CO2) before it enters the atmosphere, transporting it, and storing it (carbon sequestration) for centuries or millennia. Usually th ...
(CCS) technology serves to intercept the release of CO
2 into the atmosphere and redirect it into geological storage locations or concrete. The process thus results in a net zero emission of CO
2, though this may be positively or negatively altered depending on the carbon emissions associated with biomass growth, transport and processing, see below under environmental considerations. CO
2 with a biomass origin is not only released from biomass fuelled power plants, but also during the production of
pulp
Pulp may refer to:
* Pulp (fruit), the inner flesh of fruit
Engineering
* Dissolving pulp, highly purified cellulose used in fibre and film manufacture
* Pulp (paper), the fibrous material used to make paper
* Molded pulp, a packaging material
...
used to make paper and in the production of biofuels such as
biogas
Biogas is a mixture of gases, primarily consisting of methane, carbon dioxide and hydrogen sulphide, produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste and food waste. It is a ...
and
bioethanol
Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an Alcohol (chemistry), alcohol with the chemical formula . Its formula can be also written as or (an ethyl ...
. The BECCS technology can also be employed on industrial processes such as these and making cement.
BECCS technologies trap carbon dioxide in geologic formations in a semi-permanent way, whereas a tree stores its carbon only during its lifetime. In 2005 it was estimated that more than 99% of carbon dioxide stored through geologic sequestration is likely to stay in place for more than 1000 years.
While other types of carbon sinks such as the ocean, trees and soil may involve the risk of adverse
feedback loop
Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled c ...
s at increased temperatures, BECCS technology is likely to provide a better permanence by storing CO
2 in geological formations.
[
][IPCC, (200]
"Chapter 5: Underground geological storage" IPCC Special Report on Carbon dioxide Capture and Storage.
Prepared by Working Group III of the Intergovernmental Panel on Climate Change etz, B., O. Davidson, H. C. De Coninck, M. Loos, and L. A. Meyer (eds.) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp195-276.
Industrial processes have released too much CO
2 to be absorbed by conventional sinks such as trees and soil to reach low emission targets.
In addition to the presently accumulated emissions, there will be significant additional emissions during this century, even in the most ambitious low-emission scenarios. BECCS has therefore been suggested as a technology to reverse the emission trend and create a global system of net negative emissions.
This implies that the emissions would not only be zero, but negative, so that not only the emissions, but the absolute amount of CO2 in the atmosphere would be reduced.
Application
Cost
Cost estimates for BECCS range from $60-$250 per ton of CO2.
It was estimated that electrogeochemical methods of combining saline water electrolysis with mineral weathering powered by non-fossil fuel-derived electricity could, on average, increase both energy generation and CO2 removal by more than 50 times relative to BECCS, at equivalent or even lower cost, but further research is needed to develop such methods.
Technology
The main technology for CO2 capture from biotic sources generally employs the same technology as carbon dioxide capture from conventional fossil fuel sources. Broadly, three different types of technologies exist: post-combustion, pre-combustion, and oxy-fuel combustion
Oxy-fuel combustion is the process of burning a fuel using pure oxygen, or a mixture of oxygen and recirculated flue gas, instead of air. Since the nitrogen component of air is not heated, fuel consumption is reduced, and higher flame temperatures ...
.
Oxy-combustion
Oxy‐fuel combustion has been a common process in the glass, cement and steel industries. It is also a promising technological approach for CCS. In oxy‐fuel combustion, the main difference from conventional air firing is that the fuel is burned in a mixture of O2 and recycled flue gas. The O2 is produced by an air separation unit (ASU), which removes the atmospheric N2 from the oxidizer
An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxid ...
stream. By removing the N2 upstream of the process, a flue gas with a high concentration of CO2 and water vapor is produced, which eliminates the need for a post‐combustion capture plant. The water vapor can be removed by condensation, leaving a product stream of relatively high‐purity CO2 which, after subsequent purification and dehydration, can be pumped to a geological storage site.
Key challenges of BECCS implementation using oxy-combustion are associated with the combustion process. For the high volatile content biomass, the mill temperature has to be kept at a low temperature to reduce the risk of fire and explosion. In addition, the flame temperature is lower. Therefore, the concentration of oxygen needs to be increased up to 27-30%.
Pre-combustion
"Pre-combustion carbon capture" describes processes that capture CO2 before generating energy. This is often accomplished in five operating stages: oxygen generation, syngas generation, CO2 separation, CO2 compression, and power generation. The fuel first goes through a gasification process by reacting with oxygen to form a stream of CO and H2, which is syngas. The products will then go through a water-gas shift reactor to form CO2 and H2. The CO2 that is produced will then be captured, and the H2, which is a clean source, will be used for combustion to generate energy. The process of gasification combined with syngas production is called Integrated Gasification Combined Cycle
integrated gasification combined cycle (IGCC) is a technology using a high pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas ( syngas). It can then remove impurities from the syngas prior to the elect ...
(IGCC). An Air Separation Unit (ASU) can serve as the oxygen source, but some research has found that with the same flue gas, oxygen gasification is only slightly better than air gasification. Both have a thermal efficiency
In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
For a he ...
of roughly 70% using coal as the fuel source. Thus, the use of an ASU is not really necessary in pre-combustion.
Biomass is considered "sulfur-free" as a fuel for the pre-combustion capture. However, there are other trace elements in biomass combustion such as K and Na that could accumulate in the system and finally cause the degradation of the mechanical parts. Thus, further developments of the separation techniques for those trace elements are needed. And also, after the gasification process, CO2 takes up to 13% - 15.3% by mass in the syngas stream for biomass sources, while it is only 1.7% - 4.4% for coal. This limit the conversion of CO to CO2 in the water gas shift, and the production rate for H2 will decrease accordingly. However, the thermal efficiency
In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
For a he ...
of the pre-combustion capture using biomass resembles that of coal which is around 62% - 100%. Some research found that using a dry system instead of a biomass/water slurry fuel feed was more thermally efficient and practical for biomass.
Post-combustion
In addition to pre-combustion and oxy-fuel combustion technologies, post-combustion is a promising technology which can be used to extract CO2 emission from biomass fuel resources. During the process, CO2 is separated from the other gases in the flue gas stream after the biomass fuel is burnt and undergo separation process. Because it has the ability to be retrofitted to some existing power plants such as steam boilers or other newly built power stations, post-combustion technology is considered as a better option than pre-combustion technology. According to the fact sheets ''U.S. CONSUMPTION OF BIO-ENERGY WITH CARBON CAPTURE AND STORAGE'' released in March 2018, the efficiency of post-combustion technology is expected to be 95% while pre-combustion and oxy-combustion capture at an efficient rate of 85% and 87.5% respectively.
Development for current post-combustion technologies has not been entirely done due to several problems. One of the major concerns using this technology to capture carbon dioxide is the parasitic energy consumption. If the capacity of the unit is designed to be small, the heat loss to the surrounding is great enough to cause too many negative consequences. Another challenge of post-combustion carbon capture is how to deal with the mixture's components in the flue gases from initial biomass materials after combustion. The mixture consists of a high amount of alkali metals, halogens, acidic elements, and transition metals which might have negative impacts on the efficiency of the process. Thus, the choice of specific solvents and how to manage the solvent process should be carefully designed and operated.
Biomass feedstocks
Biomass sources used in BECCS include agricultural residues & waste, forestry residue & waste, industrial & municipal wastes, and energy crops specifically grown for use as fuel. Current BECCS projects capture CO2 from ethanol bio-refinery plants and municipal solid waste
Municipal solid waste (MSW), commonly known as trash or garbage in the United States and rubbish in Britain, is a waste type consisting of everyday items that are discarded by the public. "Garbage" can also refer specifically to food waste, ...
(MSW) recycling center.
A variety of challenges must be faced to ensure that biomass-based carbon capture is feasible and carbon neutral. Biomass stocks require availability of water and fertilizer inputs, which themselves exist at a nexus of environmental challenges in terms of resource disruption, conflict, and fertilizer runoff. A second major challenge is logistical: bulky biomass products require transportation to geographical features that enable sequestration.
Current projects
To date, there have been 23 BECCS projects around the world, with the majority in North America and Europe. Today, there are only 6 projects in operation, capturing CO2 from ethanol bio-refinery plants and MSW recycling centers.
At ethanol plants
Illinois Industrial Carbon Capture and Storage (IL-CCS) is one of the milestones, being the first industrial-scaled BECCS project, in the early 21st century. Located in Decatur, Illinois, USA, IL-CCS captures CO2 from Archer Daniels Midland (ADM) ethanol plant. The captured CO2 is then injected under the deep saline formation at Mount Simon Sandstone. IL-CCS consists of 2 phases. The first being a pilot project which was implemented from 11/2011 to 11/2014. Phase 1 has a capital cost of around 84 million US dollars. Over the 3-year period, the technology successfully captured and sequestered 1 million tonne of CO2 from the ADM plant to the aquifer. No leaking of CO2 from the injection zone was found during this period. The project is still being monitored for future reference. The success of phase 1 motivated the deployment of phase 2, bringing IL-CCS (and BECCS) to industrial scale. Phase 2 has been in operation since 11/2017 and also use the same injection zone at Mount Simon Sandstone as phase 1. The capital cost for second phase is about 208 million US dollars including 141 million US dollar fund from the Department of Energy. Phase 2 has capturing capacity about 3 time larger than the pilot project (phase 1). Annually, IL-CCS can capture more than 1 million tonne of CO2. With the largest of capturing capacity, IL-CCS is currently the largest BECCS project in the world.
In addition to the IL-CCS project, there are about three more projects that capture CO2 from the ethanol plant at smaller scales. For example, Arkalon in Kansas, USA can capture 0.18-0.29 MtCO2/yr, OCAP in the Netherlands can capture about 0.1-0.3 MtCO2/yr, and Husky Energy in Canada can capture 0.09-0.1 MtCO2/yr.
At MSW recycling centers
Beside capturing CO2 from the ethanol plants, currently, there are 2 models in Europe are designed to capture CO2 from the processing of Municipal Solid Waste. The Klemetsrud Plant at Oslo, Norway use biogenic municipal solid waste to generate 175 GWh and capture 315 Ktonne of CO2 each year. It uses absorption technology with Aker Solution Advanced Amine solvent as a CO2 capture unit. Similarly, the ARV Duiven in the Netherlands uses the same technology, but it captures less CO2 than the previous model. ARV Duiven generates around 126 GWh and only capture 50 Ktonne of CO2 each year.
Techno-economics of BECCS and the TESBiC Project
The largest and most detailed techno-economic assessment Techno-economic assessment or techno-economic analysis (abbreviated TEA) is a method of analyzing the economic performance of an industrial process, product, or service. It typically uses software modeling to estimate capital cost, operating cost, a ...
of BECCS was carried out by cmcl innovations and the TESBiC group (Techno-Economic Study of Biomass to CCS) in 2012. This project recommended the most promising set of biomass fueled power generation technologies coupled with carbon capture and storage (CCS). The project outcomes lead to a detailed “biomass CCS roadmap” for the U.K..
Challenges
Environmental considerations
Some of the environmental considerations and other concerns about the widespread implementation of BECCS are similar to those of CCS. However, much of the critique towards CCS is that it may strengthen the dependency on depletable fossil fuels and environmentally invasive coal mining. This is not the case with BECCS, as it relies on renewable biomass. There are however other considerations which involve BECCS and these concerns are related to the possible increased use of biofuels
Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels, such as oil. According to the United States Energy Information Administration (E ...
.
Biomass production is subject to a range of sustainability constraints, such as: scarcity of arable land and fresh water, loss of biodiversity
Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, de ...
, competition with food production, deforestation
Deforestation or forest clearance is the removal of a forest or stand of trees from land that is then converted to non-forest use. Deforestation can involve conversion of forest land to farms, ranches, or urban use. The most concentrated d ...
and scarcity of phosphorus. It is important to make sure that biomass is used in a way that maximizes both energy and climate benefits. There has been criticism to some suggested BECCS deployment scenarios, where there would be a very heavy reliance on increased biomass input.
Large areas of land would be required to operate BECCS on an industrial scale. To remove 10 billion tonnes of CO2, upwards of 300 million hectares of land area (larger than India) would be required. As a result, BECCS risks using land that could be better suited to agriculture and food production, especially in developing countries.
These systems may have other negative side effects. There is however presently no need to expand the use of biofuels in energy or industry applications to allow for BECCS deployment. There is already today considerable emissions from point sources of biomass derived CO2, which could be utilized for BECCS. Though, in possible future bioenergy system upscaling scenarios, this may be an important consideration.
Upscaling BECCS would require a sustainable supply of biomass - one that does not challenge our land, water, and food security. Using bioenergy crops as feedstock will not only cause sustainability concerns but also require the use of more fertilizer leading to soil contamination
Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity ...
and water pollution
Water pollution (or aquatic pollution) is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water ...
. Moreover, crop yield is generally subjected to climate condition, i.e. the supply of this bio-feedstock can be hard to control. Bioenergy sector must also expand to meet the supply level of biomass. Expanding bioenergy would require technical and economic development accordingly.
Technical challenges
A challenge for applying BECCS technology, as with other carbon capture and storage technologies, is to find suitable geographic locations to build combustion plant and to sequester captured CO2. If biomass sources are not close by the combustion unit, transporting biomass emits CO2 offsetting the amount of CO2 captured by BECCS. BECCS also face technical concerns about efficiency of burning biomass. While each type of biomass has a different heating value, biomass in general is a low-quality fuel. Thermal conversion of biomass typically has an efficiency of 20-27%. For comparison, coal-fired plants have an efficiency of about 37%.
BECCS also faces a question whether the process is actually energy positive. Low energy conversion efficiency
Energy conversion efficiency (''η'') is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radia ...
, energy-intensive biomass supply, combined with the energy required to power the CO2 capture and storage unit impose energy penalty on the system. This might lead to a low power generation efficiency.
Potential solutions
Alternative biomass sources
Agricultural and forestry residues
Globally, 14 Gt of forestry residue and 4.4 Gt residues from crop production (mainly barley, wheat, corn, sugarcane and rice) are generated every year. This is a significant amount of biomass which can be combusted to generate 26 EJ/year and achieve a 2.8 Gt of negative CO2 emission through BECCS. Utilizing residues for carbon capture will provide social and economic benefits to rural communities. Using waste from crops and forestry is a way to avoid the ecological and social challenges of BECCS.
Municipal solid waste
Municipal solid waste
Municipal solid waste (MSW), commonly known as trash or garbage in the United States and rubbish in Britain, is a waste type consisting of everyday items that are discarded by the public. "Garbage" can also refer specifically to food waste, ...
(MSW) is one of the newly developed sources of biomass. Two current BECCS plants are using MSW as feedstocks. Waste collected from daily life is recycled via incineration
Incineration is a waste treatment process that involves the combustion of substances contained in waste materials. Industrial plants for waste incineration are commonly referred to as waste-to-energy facilities. Incineration and other high ...
waste treatment process. Waste goes through high temperature thermal treatment and the heat generated from combusting organic part of waste is used to generate electricity. CO2 emitted from this process is captured through absorption using MEA. For every 1 kg of waste combusted, 0.7 kg of negative CO2 emission is achieved. Utilizing solid waste also have other environmental benefits.
Co-firing coal with biomass
As of 2017 there were roughly 250 cofiring plants in the world, including 40 in the US. Biomass cofiring with coal has efficiency near those of coal combustion. Instead of co-firing, full conversion from coal to biomass of one or more generating units in a plant may be preferred.
Policy
Based on the Kyoto Protocol
The Kyoto Protocol was an international treaty which extended the 1992 United Nations Framework Convention on Climate Change (UNFCCC) that commits state parties to reduce greenhouse gas emissions, based on the scientific consensus that (part ...
agreement, carbon capture and storage projects were not applicable as an emission reduction tool to be used for the Clean Development Mechanism
The Clean Development Mechanism (CDM) is a United Nations-run carbon offset scheme allowing countries to fund greenhouse gas emissions-reducing projects in other countries and claim the saved emissions as part of their own efforts to meet internati ...
(CDM) or for Joint Implementation Joint Implementation (JI) is one of three flexibility mechanisms set out in the Kyoto Protocol to help countries with binding greenhouse gas emissions targets (the Annex I countries) meet their treaty obligations. Under Article 6, any Annex I count ...
(JI) projects. Recognising CCS technologies as an emission reduction tool is vital for the implementation of such plants as there is no other financial motivation for the implementation of such systems. There has been growing support to have fossil CCS and BECCS included in the protocol as well as the current Paris Agreement. Accounting studies on how this can be implemented, including BECCS, have also been done.
European Union
There are some future policies that give incentives to use bioenergy such as Renewable Energy Directive (RED) and Fuel Quality Directive (FQD), which require 20% of total energy consumption to be based on biomass, bioliquids and biogas by 2020.
Sweden
The Swedish Energy Agency has been commissioned by the Swedish government to design a Swedish support system for BECCS to be implemented by 2022.
United Kingdom
In 2018 the Committee on Climate Change
The Climate Change Committee (CCC), originally named the Committee on Climate Change, is an independent non-departmental public body, formed under the Climate Change Act (2008) to advise the United Kingdom and devolved Governments and Parliament ...
recommended that aviation biofuels should provide up to 10% of total aviation fuel demand by 2050, and that all aviation biofuels should be produced with CCS as soon as the technology is available.
United States
In 2018 the US congress significantly increased and extended the section 45Q tax credit for sequestration of carbon oxides. This has been a top priority of carbon capture and sequestration (CCS) supporters for several years. It increased $25.70 to $50 tax credit per tonnes of CO2 for secure geological storage and $15.30 to $35 tax credit per tonne of CO2 used in enhanced oil recovery.
Public perception
Limited studies have investigated public perceptions of BECCS. Of those studies, most originate from developed countries in the northern hemisphere and therefore may not represent a worldwide view.
In a 2018 study involving online panel respondents from the United Kingdom, United States, Australia, and New Zealand, respondents showed little prior awareness of BECCS technologies. Measures of respondents perceptions suggest that the public associate BECCS with a balance of both positive and negative attributes. Across the four countries, 45% of the respondents indicated they would support small scale trials of BECCS, whereas only 21% were opposed. BECCS was moderately preferred among other methods of carbon dioxide removal
Carbon dioxide removal (CDR), also known as negative emissions, is a process in which carbon dioxide gas () is removed from the atmosphere and sequestered for long periods of time. Similarly, greenhouse gas removal (GGR) or negative greenho ...
like direct air capture
Direct air capture (DAC) is a process of capturing carbon dioxide () directly from the ambient air (as opposed to capturing from point sources, such as a cement factory or biomass power plant) and generating a concentrated stream of for seques ...
or enhanced weathering
Enhanced weathering is a process that aims to accelerate the natural weathering by spreading finely ground silicate rock, such as basalt, onto surfaces which speeds up chemical reactions between rocks, water, and air. It also removes carbon dioxid ...
, and greatly preferred over methods of solar radiation management
Solar geoengineering, or solar radiation modification (SRM), is a type of climate engineering in which sunlight (solar radiation) would be reflected back to outer space to limit or reverse human-caused climate change. It is not a substitute for ...
.
See also
* Biosequestration
Biosequestration or biological sequestration is the capture and storage of the atmospheric greenhouse gas carbon dioxide by continual or enhanced biological processes.
This form of carbon sequestration occurs through increased rates of photosyn ...
* Carbon dioxide removal
Carbon dioxide removal (CDR), also known as negative emissions, is a process in which carbon dioxide gas () is removed from the atmosphere and sequestered for long periods of time. Similarly, greenhouse gas removal (GGR) or negative greenho ...
* Carbon negative
Carbon dioxide removal (CDR), also known as negative emissions, is a process in which carbon dioxide gas () is removed from the atmosphere and sequestered for long periods of time. Similarly, greenhouse gas removal (GGR) or negative greenho ...
* Carbon tech Carbon tech is a group of existing and emerging technologies that are rapidly transforming oil and gas to low emissions energy. Combined, these technologies take a circular carbon economy approach for managing and reducing carbon footprints, while o ...
* Climate change mitigation scenarios
Climate change scenarios or socioeconomic scenarios are projections of future greenhouse gas (GHG) emissions used by analysts to assess future vulnerability to climate change. Scenarios and pathways are created by scientists to survey any long ...
* Climate engineering
Climate engineering (also called geoengineering) is a term used for both carbon dioxide removal (CDR) and solar radiation management (SRM), also called solar geoengineering, when applied at a planetary scale.IPCC (2022Chapter 1: Introduction and F ...
* List of emerging technologies
This is a list of emerging technologies, in-development technical innovations with significant potential in their applications. The criteria for this list is that the technology must:
# Exist in some way; purely hypothetical technologies can ...
* Low-carbon economy
A low-carbon economy (LCE) or decarbonised economy is an economy based on energy sources that produce low levels of greenhouse gas (GHG) emissions. GHG emissions due to human activity are the dominant cause of observed climate change since the mi ...
* United Nations Environment Programme
The United Nations Environment Programme (UNEP) is responsible for coordinating responses to environmental issues within the United Nations system. It was established by Maurice Strong, its first director, after the United Nations Conference on th ...
* Virgin Earth Challenge
The Virgin Earth Challenge was a competition offering a $25 million prize for whoever could demonstrate a commercially viable design which results in the permanent removal of greenhouse gases out of the Earth's atmosphere to contribute materia ...
References
Sources
*
*
{{Bioenergy
Carbon capture and storage
Bioenergy
Climate engineering
Carbon dioxide removal