Terminology
A binary form (of degree ''n'') is a homogeneous polynomial Σ ()''a''''n''−''i''''x''''n''−''i''''y''''i'' = ''a''''n''''x''''n'' + ()''a''''n''−1''x''''n''−1''y'' + ... + ''a''0''y''''n''. The group ''SL''2(C) acts on these forms by taking ''x'' to ''ax'' + ''by'' and ''y'' to ''cx'' + ''dy''. This induces an action on the space spanned by ''a''0, ..., ''a''''n'' and on the polynomials in these variables. An invariant is a polynomial in these ''n'' + 1 variables ''a''0, ..., ''a''''n'' that is invariant under this action. More generally a covariant is a polynomial in ''a''0, ..., ''a''''n'', ''x'', ''y'' that is invariant, so an invariant is a special case of a covariant where the variables ''x'' and ''y'' do not occur. More generally still, a simultaneous invariant is a polynomial in the coefficients of several different forms in ''x'' and ''y''. In terms ofExamples
A form ''f'' is itself a covariant of degree 1 and order ''n''. The discriminant of a form is an invariant. TheThe ring of invariants
The structure of the ring of invariants has been worked out for small degrees. gave tables of the numbers of generators of invariants and covariants for forms of degree up to 10, though the tables have a few minor errors for large degrees, mostly where a few invariants or covariants are omitted.Covariants of a binary linear form
For linear forms ''ax'' + ''by'' the only invariants are constants. The algebra of covariants is generated by the form itself of degree 1 and order 1.Covariants of a binary quadric
The algebra of invariants of the quadratic form ''ax''2 + 2''bxy'' + ''cy''2 is a polynomial algebra in 1 variable generated by the discriminant ''b''2 − ''ac'' of degree 2. The algebra of covariants is a polynomial algebra in 2 variables generated by the discriminant together with the form ''f'' itself (of degree 1 and order 2).Covariants of a binary cubic
The algebra of invariants of the cubic form ''ax''3 + 3''bx''2''y'' + 3''cxy''2 + ''dy''3 is a polynomial algebra in 1 variable generated by the discriminant ''D'' = 3''b''2''c''2 + 6''abcd'' − 4''b''3''d'' − 4''c''3''a'' − ''a''2''d''2 of degree 4. The algebra of covariants is generated by the discriminant, the form itself (degree 1, order 3), the Hessian ''H'' (degree 2, order 2) and a covariant ''T'' of degree 3 and order 3. They are related by the syzygy 4''H''3=''Df''2-''T''2 of degree 6 and order 6.Covariants of a binary quartic
The algebra of invariants of a quartic form is generated by invariants ''i'', ''j'' of degrees 2, 3. This ring is naturally isomorphic to the ring of modular forms of level 1, with the two generators corresponding to the Eisenstein series ''E''4 and ''E''6. The algebra of covariants is generated by these two invariants together with the form ''f'' of degree 1 and order 4, the Hessian ''H'' of degree 2 and order 4, and a covariant ''T'' of degree 3 and order 6. They are related by a syzygy of degree 6 and order 12.Covariants of a binary quintic
The algebra of invariants of a quintic form was found by Sylvester and is generated by invariants of degree 4, 8, 12, 18. The generators of degrees 4, 8, 12 generate a polynomial ring, which contains the square of Hermite's skew invariant of degree 18. The invariants are rather complicated to write out explicitly: Sylvester showed that the generators of degrees 4, 8, 12, 18 have 12, 59, 228, and 848 terms often with very large coefficients. The ring of covariants is generated by 23 covariants, one of which is theCovariants of a binary sextic
The algebra of invariants of a sextic form is generated by invariants of degree 2, 4, 6, 10, 15. The generators of degrees 2, 4, 6, 10 generate a polynomial ring, which contains the square of the generator of degree 15. The ring of covariants is generated by 26 covariants. The ring of invariants is closely related to the moduli space of curves of genus 2, because such a curve can be represented as a double cover of the projective line branched at 6 points, and the 6 points can be taken as the roots of a binary sextic.Covariants of a binary septic
The ring of invariants of binary septics is anomalous and has caused several published errors. Cayley claimed incorrectly that the ring of invariants is not finitely generated. gave lower bounds of 26 and 124 for the number of generators of the ring of invariants and the ring of covariants and observed that an unproved "fundamental postulate" would imply that equality holds. However showed that Sylvester's numbers are not equal to the numbers of generators, which are 30 for the ring of invariants and at least 130 for the ring of covariants, so Sylvester's fundamental postulate is wrong. and showed that the algebra of invariants of a degree 7 form is generated by a set with 1 invariant of degree 4, 3 of degree 8, 6 of degree 12, 4 of degree 14, 2 of degree 16, 9 of degree 18, and one of each of the degrees 20, 22, 26, 30. gives 147 generators for the ring of covariants.Covariants of a binary octavic
showed that the ring of invariants of a degree 8 form is generated by 9 invariants of degrees 2, 3, 4, 5, 6, 7, 8, 9, 10, and the ring of covariants is generated by 69 covariants. August von Gall () and confirmed the generators for the ring of invariants and showed that the ideal of relations between them is generated by elements of degrees 16, 17, 18, 19, 20.Covariants of a binary nonic
showed that the algebra of invariants of a degree 9 form is generated by 92 invariants. Cröni, Hagedorn, and BrouwerBrouwer, Invariants and covariants of quanticsCovariants of a binary decimic
Sylvester stated that the ring of invariants of binary decics is generated by 104 invariants the ring of covariants by 475 covariants; his list is to be correct for degrees up to 16 but wrong for higher degrees. showed that the algebra of invariants of a degree 10 form is generated by 106 invariants. Hagedorn and Brouwer computed 510 covariants, and Lercier & Olive showed that this list is complete.Covariants of a binary undecimic
The ring of invariants of binary forms of degree 11 is complicated and has not yet been described explicitly.Covariants of a binary duodecimic
For forms of degree 12 found that in degrees up to 14 there are 109 basic invariants. There are at least 4 more in higher degrees. The number of basic covariants is at least 989. The number of generators for invariants and covariants of binary forms can be found in and , respectively.Invariants of several binary forms
The covariants of a binary form are essentially the same as joint invariants of a binary form and a binary linear form. More generally, on can ask for the joint invariants (and covariants) of any collection of binary forms. Some cases that have been studied are listed below.Covariants of two linear forms
There are 1 basic invariant and 3 basic covariants.Covariants of a linear form and a quadratic
There are 2 basic invariants and 5 basic covariants.Covariants of a linear form and a cubic
There are 4 basic invariants (essentially the covariants of a cubic) and 13 basic covariants.Covariants of a linear form and a quartic
There are 5 basic invariants (essentially the basic covariants of a quartic) and 20 basic covariants.Covariants of a linear form and a quintic
There are 23 basic invariants (essentially the basic covariants of a quintic) and 94 basic covariants.Covariants of a linear form and a quantic
Covariants of several linear forms
The ring of invariants of ''n'' linear forms is generated by ''n''(''n''–1)/2 invariants of degree 2. The ring of covariants of ''n'' linear forms is essentially the same as the ring of invariants of ''n''+1 linear forms.Covariants of two quadratics
There are 3 basic invariants and 6 basic covariants.Covariants of two quadratics and a linear form
Covariants of several linear and quadratic forms
The ring of invariants of a sum of ''m'' linear forms and ''n'' quadratic forms is generated by ''m''(''m''–1)/2 + ''n''(''n''+1)/2 generators in degree 2, ''nm''(''m''+1)/2 + ''n''(''n''–1)(''n''–2)/6 in degree 3, and ''m''(''m''+1)''n''(''n''–1)/4 in degree 4. For the number of generators of the ring of covariants, change ''m'' to ''m''+1.Covariants of a quadratic and a cubic
There are 5 basic invariants and 15 basic covariantsCovariants of a quadratic and a quartic
There are 6 basic invariants and 18 basic covariantsCovariants of a quadratic and a quintic
There are 29 basic invariants and 92 basic covariantsCovariants of a cubic and a quartic
There are 20 basic invariants and 63 basic covariantsCovariants of two quartics
There are 8 basic invariants (3 of degree 2, 4 of degree 3, and 1 of degree 4) and 28 basic covariants. (Gordan gave 30 covariants, but Sylvester showed that two of these are reducible.)Covariants of many cubics or quartics
The numbers of generators of invariants or covariants were given by .See also
*References
* * * * * * * * * * * * * *External links
*{{citation, first=Andries E. , last=Brouwer, url=http://www.win.tue.nl/~aeb/math/invar.html , title=Invariants of binary forms Invariant theory