HOME

TheInfoList



OR:

The Bellman pseudospectral method is a
pseudospectral method Pseudo-spectral methods, also known as discrete variable representation (DVR) methods, are a class of numerical methods used in applied mathematics and scientific computing for the solution of partial differential equations. They are closely rel ...
for
optimal control Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and ...
based on
Bellman's principle of optimality A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time ...
. It is part of the larger theory of
pseudospectral optimal control Pseudospectral optimal control is a joint theoretical-computational method for solving optimal control problems. It combines pseudospectral (PS) theory with optimal control theory to produce PS optimal control theory. PS optimal control theory ...
, a term coined by
Ross Ross or ROSS may refer to: People * Clan Ross, a Highland Scottish clan * Ross (name), including a list of people with the surname or given name Ross, as well as the meaning * Earl of Ross, a peerage of Scotland Places * RoSS, the Republic of Sou ...
. The method is named after
Richard E. Bellman Richard Ernest Bellman (August 26, 1920 – March 19, 1984) was an American applied mathematician, who introduced dynamic programming in 1953, and made important contributions in other fields of mathematics, such as biomathematics. He founde ...
. It was introduced by
Ross Ross or ROSS may refer to: People * Clan Ross, a Highland Scottish clan * Ross (name), including a list of people with the surname or given name Ross, as well as the meaning * Earl of Ross, a peerage of Scotland Places * RoSS, the Republic of Sou ...
et al.I. M. Ross, Q. Gong and P. Sekhavat, The Bellman pseudospectral method, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, AIAA-2008-6448, August 18–21, 2008. first as a means to solve multiscale optimal control problems, and later expanded to obtain suboptimal solutions for general optimal control problems.


Theoretical foundations

The multiscale version of the Bellman pseudospectral method is based on the spectral convergence property of the
Ross–Fahroo pseudospectral method Introduced by I. Michael Ross and F. Fahroo, the Ross–Fahroo pseudospectral methods are a broad collection of pseudospectral methods for optimal control.N. Bedrossian, M. Karpenko, and S. Bhatt, "Overclock My Satellite: Sophisticated Algorit ...
s. That is, because the Ross–Fahroo pseudospectral method converges at an exponentially fast rate, pointwise convergence to a solution is obtained at very low number of nodes even when the solution has high-frequency components. This
aliasing In signal processing and related disciplines, aliasing is an effect that causes different signals to become indistinguishable (or ''aliases'' of one another) when sampled. It also often refers to the distortion or artifact that results when a ...
phenomenon in optimal control was first discovered by Ross et al. Rather than use signal processing techniques to anti-alias the solution, Ross et al. proposed that Bellman's principle of optimality can be applied to the converged solution to extract information between the nodes. Because the Gauss–Lobatto nodes cluster at the boundary points, Ross et al. suggested that if the node density around the initial conditions satisfy the
Nyquist–Shannon sampling theorem The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that pe ...
, then the complete solution can be recovered by solving the optimal control problem in a recursive fashion over piecewise segments known as Bellman segments. In an expanded version of the method, Ross et al., proposed that method could also be used to generate feasible solutions that were not necessarily optimal. In this version, one can apply the Bellman pseudospectral method at even lower number of nodes even under the knowledge that the solution may not have converged to the optimal one. In this situation, one obtains a feasible solution. A remarkable feature of the Bellman pseudospectral method is that it automatically determines several measures of suboptimality based on the original pseudospectral cost and the cost generated by the sum of the Bellman segments.


Computational efficiency

One of the computational advantages of the Bellman pseudospectral method is that it allows one to escape Gaussian rules in the distribution of node points. That is, in a standard pseudospectral method, the distribution of node points are Gaussian (typically Gauss-Lobatto for finite horizon and Gauss-Radau for infinite horizon). The Gaussian points are sparse in the middle of the interval (middle is defined in a shifted sense for infinite-horizon problems) and dense at the boundaries. The second-order accumulation of points near the boundaries have the effect of wasting nodes. The Bellman pseudospectral method takes advantage of the node accumulation at the initial point to anti-alias the solution and discards the remainder of the nodes. Thus the final distribution of nodes is non-Gaussian and dense while the computational method retains a sparse structure.


Applications

The Bellman pseudospectral method was first applied by Ross et al. to solve the challenging problem of very low thrust trajectory optimization. It has been successfully applied to solve a practical problem of generating very high accuracy solutions to a trans-Earth-injection problem of bringing a space capsule from a lunar orbit to a pin-pointed Earth-interface condition for successful reentry.H. Yan, Q. Gong, C. D. Park, I. M. Ross and C. N. D'Souza, High-Accuracy Moon to Earth trajectory optimization, AIAA Guidance, Navigation, and Control Conference, 2010. The Bellman pseudospectral method is most commonly used as an additional check on the optimality of a pseudospectral solution generated by the Ross–Fahroo pseudospectral methods. That is, in addition to the use of
Pontryagin's minimum principle Pontryagin's maximum principle is used in optimal control theory to find the best possible control for taking a dynamical system from one state to another, especially in the presence of constraints for the state or input controls. It states that it ...
in conjunction with the solutions obtained by the Ross–Fahroo pseudospectral methods, the Bellman pseudospectral method is used as a primal-only test on the optimality of the computed solution.


See also

*
Legendre pseudospectral method The Legendre pseudospectral method for optimal control problems is based on Legendre polynomials. It is part of the larger theory of pseudospectral optimal control, a term coined by Ross. A basic version of the Legendre pseudospectral was origi ...
*
Chebyshev pseudospectral method The Chebyshev pseudospectral method for optimal control problems is based on Chebyshev polynomials of the first kind. It is part of the larger theory of pseudospectral optimal control, a term coined by Ross. Unlike the Legendre pseudospectral method ...
*
Pseudospectral knotting method In applied mathematics, the pseudospectral knotting method is a generalization and enhancement of a standard pseudospectral method for optimal control. The concept was introduced by I. Michael Ross and F. Fahroo in 2004, and forms part of the co ...


References

{{DEFAULTSORT:Pseudospectral Optimal Control Optimal control Numerical analysis Control theory