Beam-riding, also known as Line-Of-Sight Beam Riding (LOSBR) or beam guidance, is a technique of directing a
missile
In military terminology, a missile is a missile guidance, guided airborne ranged weapon capable of self-propelled flight usually by a jet engine or rocket motor. Missiles are thus also called guided missiles or guided rockets (when a previously ...
to its target by means of
radar
Radar is a detection system that uses radio waves to determine the distance ('' ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
or a
laser beam. The name refers to the way the missile flies down the guidance beam, which is aimed at the target. It is one of the simplest guidance systems and was widely used on early missile systems, however it had a number of disadvantages and is now found typically only in short-range roles.
Basic concept
Beam riding is based on a signal that is pointed towards the target. The signal does not have to be powerful, as it is not necessary to use it for tracking as well.
The main use of this kind of system is to destroy airplanes or tanks. First, an
aiming station
An aiming station is something used to designate targets for other systems, usually missiles. An example is a tank using a laser or radar
Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and ...
(possibly mounted on a vehicle) in the launching area directs a narrow radar or laser beam at the enemy aircraft or tank. Then, the missile is launched and at some point after launch is “gathered” by the radar or laser beam when it flies into it. From this stage onwards, the missile attempts to keep itself inside the beam, while the aiming station keeps the beam pointing at the target. The missile, controlled by a computer inside it, “rides” the beam to the target.
Radar beam riding
Beam riding is one of the simplest methods of missile guidance using a radar. It was widely used for
surface-to-air missiles in the post-
World War II
World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
era for this reason. An early example was the British
Brakemine, first tested in 1944, as was the first commercially available SAM, the
Oerlikon Contraves RSA
RSA may refer to:
Organizations Academia and education
* Rabbinical Seminary of America, a yeshiva in New York City
*Regional Science Association International (formerly the Regional Science Association), a US-based learned society
*Renaissance S ...
.
Early tracking radars generally use a beam a few degrees wide, which makes it easy to find the target as it moves about. Unfortunately, this makes the beam too wide to accurately attack the target, where measurements on the order of of a degree are required. To perform both operations in a single radar, some additional form of encoding is used. For WWII-era systems this was either
lobe switching, or more commonly by the second half of the war,
conical scanning. Conical scanning works by splitting the single radar beam in two, and comparing the return strength in the two beams to determine which is stronger. The radar is then rotated towards the stronger signal to re-center the target. The antenna is spun so that this comparison is being carried out all around the target, allowing it to track in both altitude and azimuth. Systems that performed this automatically were known as "
lock on" or "lock follow".
Beam riding systems can be easily adapted to work with such a system. By placing receiver antennas on the rear of the missile, the onboard electronics can compare the strength of the signal from different points on the missile body and use this to create a control signal to steer it back into the center of the beam. When used with conical scanning, the comparison can use several sets of paired antennas, typically two pairs, to keep itself centered in both axes. This system has the advantage of offloading the tracking to the ground radar; as long as the radar can keep itself accurately pointed at the target, the missile will keep itself along the same line using very simple electronics.
The inherent disadvantage of the radar beam riding system is that the beam spreads as it travels outward from the broadcaster (see
inverse square law). As the missile flies towards the target, it, therefore, becomes increasingly inaccurate. This is not a problem at short ranges, but as many early
surface-to-air missiles were designed to work at long ranges, this was a major issue. For example, earlier versions of the
RIM-2 Terrier missile introduced in the 1950s were beam riders, but later variants employed
semi-active radar homing to improve their effectiveness against high-performance and low-flying targets. In contrast to beam riding, semi-active guidance becomes ''more'' accurate as the missile approaches the target.
Another issue is the guidance path of the missile is essentially a straight line to the target. This is useful for missiles with a great speed advantage over their target, or where flight times are short, but for long-range engagements against high-performance targets the missile will need to "lead" the target in order to arrive with enough energy to do terminal manoeuvres. A possible solution for this problem was to use two radars, one for tracking the target and another for guiding the missile, but this drove up implementation costs. A more common solution for long-range missiles was to guide the missile entirely independently of the radar, using
command guidance, as was the case for the
Nike Hercules. Pure radar beam riding was rare by 1960.
Laser beam riding
Beam riding guidance became more popular again in the 1980s and 90s with the introduction of low-cost and highly portable
laser designators. A laser beam can be made much narrower than a radar beam while not increasing the size of the broadcaster. Additionally, it is simple to encode additional information in the beam using digital means, which has a number of advantages. Missiles with small optical receivers on their tail can beam-ride on lasers with similar ease as earlier radar beam systems, but will be inherently more accurate.
Additionally, as the beam is very narrow by design, less power is needed than a semi-active design where the volume of space being "painted" is generally larger, in order to ensure the missile body does not block all of the signal. This makes it more difficult to be noticed by the target's warning receiver. Very low power signals can be used.
[Richardson, Mark, and Al-Jaberi, Mubarak]
"The vulnerability of laser warning systems against guided weapons based on low power lasers"
Cranfield University, 28 April 2006
In modern use, laser beam riding is generally limited to short-range missiles, both anti-air and anti-tank. Examples include
ADATS, the
Starstreak, the
RBS 70,
MSS-1.2, Russian
9K121 Vikhr and
9M119 Svir, Ukrainian
Skif and
Stuhna-P ATGMs.
References
External links
*Jerzy Maryniak et al.
"Modeling of Motion of an Automatically Controlled Beam-Riding Guided Missile in Terms of the Maggi Equations" (pdf) AIAA Atmospheric Flight Mechanics Conference and Exhibit, August 2005
*
Missile Guidance aerospaceweb.org, accessed March 14, 2007
*Greg Goebel
February 1, 2007, accessed March 14, 2007
*Carlo Kopp
''Australian Aviation'', July, 1989
*Carlo Kopp
''Australian Aviation'', June 1982
{{DEFAULTSORT:Beam Riding
Missile guidance
Military radars
Military lasers