Barbell Graph
   HOME

TheInfoList



OR:

In the mathematical discipline of
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ...
, the ''n''-barbell graph is a special type of
undirected graph In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' v ...
consisting of two non-overlapping ''n''-vertex
cliques A clique ( AusE, CanE, or ), in the social sciences, is a group of individuals who interact with one another and share similar interests. Interacting with cliques is part of normative social development regardless of gender, ethnicity, or popular ...
together with a single edge that has an endpoint in each clique.


See also

*
Lollipop graph In the mathematical discipline of graph theory, the (''m'',''n'')-lollipop graph is a special type of graph consisting of a complete graph (clique) on ''m'' vertices and a path graph on ''n'' vertices, connected with a bridge. The special case o ...
*
Tadpole graph In the mathematical discipline of graph theory, the (''m'',''n'')-tadpole graph is a special type of graph consisting of a cycle graph on ''m'' (at least 3) vertices and a path graph on ''n'' vertices, connected with a bridge. See also * Ba ...


References

Parametric families of graphs {{graph-stub