The Barabási–Albert (BA) model is an algorithm for generating random
scale-free networks
Network, networking and networked may refer to:
Science and technology
* Network theory, the study of graphs as a representation of relations between discrete objects
* Network science, an academic field that studies complex networks
Mathematics
...
using a
preferential attachment
A preferential attachment process is any of a class of processes in which some quantity, typically some form of wealth or credit, is distributed among a number of individuals or objects according to how much they already have, so that those who ...
mechanism. Several natural and human-made systems, including the
Internet
The Internet (or internet) is the global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP) to communicate between networks and devices. It is a '' network of networks'' that consists of private, pub ...
, the
World Wide Web
The World Wide Web (WWW), commonly known as the Web, is an information system enabling documents and other web resources to be accessed over the Internet.
Documents and downloadable media are made available to the network through web se ...
,
citation networks, and some
social networks
A social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for an ...
are thought to be approximately scale-free and certainly contain few nodes (called hubs) with unusually high degree as compared to the other nodes of the network. The BA model tries to explain the existence of such nodes in real networks. The algorithm is named for its inventors
Albert-László Barabási
Albert-László Barabási (born March 30, 1967) is a Romanian-born Hungarian-American physicist, best known for his discoveries in network science and network medicine.
He is Distinguished University Professor and Robert Gray Professor of Netwo ...
and
Réka Albert
Réka Albert (born 2 March 1972) is a Romanian- Hungarian scientist. She is a distinguished professor of physics and adjunct professor of biology at Pennsylvania State University and is noted for the Barabási–Albert model and research into sca ...
.
Concepts
Many observed networks (at least approximately) fall into the class of
scale-free networks
A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction ''P''(''k'') of nodes in the network having ''k'' connections to other nodes goes for large values of ''k'' as
:
P(k ...
, meaning that they have
power-law
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a proportional relative change in the other quantity, independent of the initial size of those quantities: one qua ...
(or scale-free) degree distributions, while random graph models such as the
Erdős–Rényi (ER) model and the
Watts–Strogatz (WS) model do not exhibit power laws. The Barabási–Albert model is one of several proposed models that generate scale-free networks. It incorporates two important general concepts: growth and
preferential attachment
A preferential attachment process is any of a class of processes in which some quantity, typically some form of wealth or credit, is distributed among a number of individuals or objects according to how much they already have, so that those who ...
. Both growth and preferential attachment exist widely in real networks.
Growth means that the number of nodes in the network increases over time.
Preferential attachment
A preferential attachment process is any of a class of processes in which some quantity, typically some form of wealth or credit, is distributed among a number of individuals or objects according to how much they already have, so that those who ...
means that the more connected a node is, the more likely it is to receive new links. Nodes with a higher
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathematics
...
have a stronger ability to grab links added to the network. Intuitively, the preferential attachment can be understood if we think in terms of
social networks
A social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for an ...
connecting people. Here a link from A to B means that person A "knows" or "is acquainted with" person B. Heavily linked nodes represent well-known people with lots of relations. When a newcomer enters the community, they are more likely to become acquainted with one of those more visible people rather than with a relative unknown. The BA model was proposed by assuming that in the World Wide Web, new pages link preferentially to hubs, i.e. very well known sites such as
Google
Google LLC () is an American multinational technology company focusing on search engine technology, online advertising, cloud computing, computer software, quantum computing, e-commerce, artificial intelligence, and consumer electronics. ...
, rather than to pages that hardly anyone knows. If someone selects a new page to link to by randomly choosing an existing link, the probability of selecting a particular page would be proportional to its degree. The BA model claims that this explains the preferential attachment probability rule.
Later, the
Bianconi–Barabási model
The Bianconi–Barabási model is a model in network science that explains the growth of complex evolving networks. This model can explain that nodes with different characteristics acquire links at different rates. It predicts that a node's gro ...
works to address this issue by introducing a "fitness" parameter.
Preferential attachment is an example of a
positive feedback
Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in the ...
cycle where initially random variations (one node initially having more links or having started accumulating links earlier than another) are automatically reinforced, thus greatly magnifying differences. This is also sometimes called the
Matthew effect
The Matthew effect of accumulated advantage, Matthew principle, or Matthew effect, is the tendency of individuals to accrue social or economic success in proportion to their initial level of popularity, friends, wealth, etc. It is sometimes summar ...
, "the
rich get richer
"The rich get richer and the poor get poorer" is an aphorism due to Percy Bysshe Shelley. In '' A Defence of Poetry'' (1821, not published until 1840) Shelley remarked that the promoters of utility had exemplified the saying, "To him that hath, ...
". See also
autocatalysis
A single chemical reaction is said to be autocatalytic if one of the reaction products is also a catalyst for the same or a coupled reaction.Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and Dynamics'' (2nd ed., Prentice-Hall 199 ...
.
Algorithm
The network begins with an initial connected network of
nodes.
New nodes are added to the network one at a time. Each new node is connected to
existing nodes with a probability that is proportional to the number of links that the existing nodes already have. Formally, the probability
that the new node is connected to node
is
:
where
is the degree of node
and the sum is made over all pre-existing nodes
(i.e. the denominator results in twice the current number of edges in the network). Heavily linked nodes ("hubs") tend to quickly accumulate even more links, while nodes with only a few links are unlikely to be chosen as the destination for a new link. The new nodes have a "preference" to attach themselves to the already heavily linked nodes.
Properties
Degree distribution
In the study of graphs and networks, the degree of a node in a network is the number of connections it has to other nodes and the degree distribution is the probability distribution of these degrees over the whole network.
Definition
The degree o ...
The degree distribution resulting from the BA model is scale free, in particular, it is a power law of the form
:
Hirsch index distribution
The
h-index
The ''h''-index is an author-level metric that measures both the productivity and citation impact of the publications, initially used for an individual scientist or scholar. The ''h''-index correlates with obvious success indicators such as winn ...
or Hirsch index distribution was shown to also be scale free and was proposed as the lobby index, to be used as a centrality measure
:
Furthermore, an analytic result for the density of nodes with
h-index
The ''h''-index is an author-level metric that measures both the productivity and citation impact of the publications, initially used for an individual scientist or scholar. The ''h''-index correlates with obvious success indicators such as winn ...
1 can be obtained in the case where
:
Node degree correlations
Correlations between the degrees of connected nodes develop spontaneously in the BA model because of the way the network evolves. The probability,
, of finding a link that connects a node of degree
to an ancestor node of degree
in the BA model for the special case of
(BA tree) is given by
:
This confirms the existence of degree correlations, because if the distributions were uncorrelated, we would get
.
[
For general , the fraction of links who connect a node of degree to a node of degree is]
:
Also, the nearest-neighbor degree distribution , that is, the degree distribution of the neighbors of a node with degree , is given by
:
In other words, if we select a node with degree , and then select one of its neighbors randomly, the probability that this randomly selected neighbor will have degree is given by the expression above.
Clustering coefficient
An analytical result for the clustering coefficient
In graph theory, a clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups ...
of the BA model was obtained by Klemm and Eguíluz and proven by Bollobás. A mean-field approach to study the clustering coefficient was applied by Fronczak, Fronczak and Holyst.
This behavior is still distinct from the behavior of small-world networks where clustering is independent of system size.
In the case of hierarchical networks, clustering as a function of node degree also follows a power-law,
:
This result was obtained analytically by Dorogovtsev, Goltsev and Mendes.
Spectral properties
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
The spectral density of BA model has a different shape from the semicircular spectral density of random graph. It has a triangle-like shape with the top lying well above the semicircle and edges decaying as a power law. In (Section 5.1), it was proved that the shape of this spectral density is not an exact triangular function by analyzing the moments of the spectral density as a function of the power-law exponent.
Dynamic scaling Dynamic scaling (sometimes known as Family-Vicsek scaling) is a litmus test that shows whether an evolving system exhibits self-similarity. In general a function is said to exhibit dynamic scaling if it satisfies:
:f(x,t)\sim t^\theta \varphi \left ...
By definition, the BA model describes a time developing phenomenon and hence, besides its scale-free property, one could also look for its dynamic scaling property.
In the BA network nodes can also be characterized by generalized degree , the product
of the square root of the birth time of each node and their corresponding degree , instead
of the degree alone since the time of birth matters in the BA network. We find that the
generalized degree distribution has some non-trivial features and exhibits dynamic scaling Dynamic scaling (sometimes known as Family-Vicsek scaling) is a litmus test that shows whether an evolving system exhibits self-similarity. In general a function is said to exhibit dynamic scaling if it satisfies:
:f(x,t)\sim t^\theta \varphi \left ...
:
It implies that the distinct plots of vs would collapse into a universal curve if we plot vs .
Limiting cases
Model A
Model A retains growth but does not include preferential attachment. The probability of a new node connecting to any pre-existing node is equal. The resulting degree distribution in this limit is geometric, indicating that growth alone is not sufficient to produce a scale-free structure.
Model B
Model B retains preferential attachment but eliminates growth. The model begins with a fixed number of disconnected nodes and adds links, preferentially choosing high degree nodes as link destinations. Though the degree distribution early in the simulation looks scale-free, the distribution is not stable, and it eventually becomes nearly Gaussian as the network nears saturation. So preferential attachment alone is not sufficient to produce a scale-free structure.
The failure of models A and B to lead to a scale-free distribution indicates that growth and preferential attachment are needed simultaneously to reproduce the stationary power-law distribution observed in real networks.[
]
Non-linear preferential attachment
The BA model can be thought of as a specific case of the more general non-linear preferential attachment (NLPA) model. The NLPA algorithm is identical to the BA model with the attachment probability replaced by the more general form
:
where is a constant positive exponent. If , NLPA reduces to the BA model and is referred to as "linear". If , NLPA is referred to as "sub-linear" and the degree distribution of the network tends to a stretched exponential distribution. If , NLPA is referred to as "super-linear" and a small number of nodes connect to almost all other nodes in the network. For both and , the scale-free property of the network is broken in the limit of infinite system size. However, if is only slightly larger than , NLPA may result in degree distributions which appear to be transiently scale free.
History
Preferential attachment made its first appearance in 1923 in the celebrated urn model of the Hungarian mathematician György Pólya
György () is a Hungarian language, Hungarian version of the name ''George (given name), George''. Some notable people with this given name:
* György Alexits, as a Hungarian mathematician
* György Almásy, Hungarian asiologist, traveler, zoolog ...
in 1923. The master equation method, which yields a more transparent derivation, was applied to the problem by Herbert A. Simon
Herbert Alexander Simon (June 15, 1916 – February 9, 2001) was an American political scientist, with a Ph.D. in political science, whose work also influenced the fields of computer science, economics, and cognitive psychology. His primary ...
in 1955 in the course of studies of the sizes of cities and other phenomena. It was first applied to explain citation frequencies by Derek de Solla Price
Derek John de Solla Price (22 January 1922 – 3 September 1983) was a British physicist, historian of science, and information scientist. He was known for his investigation of the Antikythera mechanism, an ancient Greek planetary computer, and ...
in 1976. Price was interested in the acumulation of citations of scientific papers and the Price model used "cumulative advantage" (his name for preferential attachment) to generate a fat tailed distribution. In the language of modern citations network, Price's model produces a directed network, i.e. the version of the Barabási-Albert model. The name "preferential attachment" and the present popularity of scale-free network models is due to the work of Albert-László Barabási
Albert-László Barabási (born March 30, 1967) is a Romanian-born Hungarian-American physicist, best known for his discoveries in network science and network medicine.
He is Distinguished University Professor and Robert Gray Professor of Netwo ...
and Réka Albert
Réka Albert (born 2 March 1972) is a Romanian- Hungarian scientist. She is a distinguished professor of physics and adjunct professor of biology at Pennsylvania State University and is noted for the Barabási–Albert model and research into sca ...
, who discovered that a similar process is present in real networks, and applied in 1999 preferential attachment to explain the numerically observed degree distributions on the web.
See also
* Bianconi–Barabási model
The Bianconi–Barabási model is a model in network science that explains the growth of complex evolving networks. This model can explain that nodes with different characteristics acquire links at different rates. It predicts that a node's gro ...
* Chinese restaurant process
In probability theory, the Chinese restaurant process is a discrete-time stochastic process, analogous to seating customers at tables in a restaurant.
Imagine a restaurant with an infinite number of circular tables, each with infinite capacity. C ...
* Complex networks
Complex Networks is an American media and entertainment company for youth culture, based in New York City. It was founded as a bi-monthly magazine, ''Complex'', by fashion designer Marc (Ecko) Milecofsky. Complex Networks reports on popular a ...
* Erdős–Rényi (ER) model
* Price's model Price's model (named after the physicist Derek J. de Solla Price) is a mathematical model for the growth of citation networks. It was the first model which generalized the Simon model to be used for networks, especially for growing networks. Price's ...
* Percolation theory
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected ...
* Scale-free network
A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction ''P''(''k'') of nodes in the network having ''k'' connections to other nodes goes for large values of ''k'' as
:
P(k) ...
* Small-world network
A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other and most nodes can be reached from every other node by a sm ...
* Watts and Strogatz model
Watts is plural for ''watt'', the unit of power.
Watts may also refer to:
People
*Watts (surname), list of people with the surname Watts Fictional characters
*Watts, main character in the film '' Some Kind of Wonderful''
*Watts family, six chara ...
References
External links
"This Man Could Rule the World"
"A Java Implementation for Barabási–Albert"
"Generating Barabási–Albert Model Graphs in Code"
{{DEFAULTSORT:Barabasi-Albert Model
Social networks
Graph algorithms
Random graphs