In
telecommunications and
professional audio, a balanced line or balanced signal pair is a circuit consisting of two conductors of the same type, both of which have equal
impedances
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
Quantitatively, the impedance of a two-terminal circuit element is the ratio of the comp ...
along their lengths and equal impedances to
ground
Ground may refer to:
Geology
* Land, the surface of the Earth not covered by water
* Soil, a mixture of clay, sand and organic matter present on the surface of the Earth
Electricity
* Ground (electricity), the reference point in an electrical c ...
and to other circuits. The chief advantage of the balanced line format is good rejection of common-mode noise and interference when fed to a differential device such as a
transformer or
differential amplifier.
[G. Ballou, ''Handbook for Sound Engineers'', Fifth Edition, Taylor & Francis, 2015, p. 1267–1268.]
As prevalent in
sound recording and reproduction, balanced lines are referred to as
balanced audio.
Common forms of balanced line are
twin-lead, used for radio frequency signals and
twisted pair, used for lower frequencies. They are to be contrasted to
unbalanced lines, such as
coaxial cable
Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a p ...
, which is designed to have its return conductor connected to
ground
Ground may refer to:
Geology
* Land, the surface of the Earth not covered by water
* Soil, a mixture of clay, sand and organic matter present on the surface of the Earth
Electricity
* Ground (electricity), the reference point in an electrical c ...
, or circuits whose return conductor actually is ground (see
earth-return telegraph).
Balanced and
unbalanced circuits can be interfaced using a device called a
balun.
Circuits driving balanced lines must themselves be balanced to maintain the benefits of balance. This may be achieved by transformer coupling (
repeating coil
In telecommunications, a repeating coil is a voice-frequency transformer characterized by a closed magnetic core, a pair of identical balanced primary ( line) windings, a pair of identical but not necessarily balanced secondary (drop) windings, an ...
s) or by merely balancing the impedance in each conductor.
Lines carrying symmetric signals (those with equal amplitudes but opposite polarities on each leg) are often incorrectly referred to as "balanced", but this is actually
differential signalling. Balanced lines and differential signalling are often used together, but they are not the same thing. Differential signalling does not make a line balanced, nor does noise rejection in balanced cables require differential signalling.
Explanation
Transmission of a signal over a balanced line reduces the influence of noise or interference due to external stray electric fields. Any external signal sources tend to
induce
Induce may refer to:
* Induced consumption
* Induced innovation
* Induced character
* Induced coma
* Induced menopause
* Induced metric
* Induced path
* Induced topology
* Induce (musician)
Ryan Smith, better known by his stage name Induce, i ...
only a
common mode signal Common-mode signal is the voltage common to both input terminals of an electrical device. In telecommunication, the common-mode signal on a transmission line is also known as longitudinal voltage.
In most electrical circuits the signal is transferr ...
on the line, and the balanced
impedances to ground minimizes differential pickup due to stray electric fields. The conductors are sometimes
twisted together to ensure that each conductor is equally exposed to any external magnetic fields that could induce unwanted noise.
Some balanced lines also have
electrostatic shielding to reduce the amount of noise introduced. The cable is often wrapped in foil, copper wire, or a copper braid. This shield provides immunity to RF interference but does not provide immunity to magnetic fields.
Some balanced lines use 4-conductor
star quad cable
Star-quad cable is a four-conductor cable that has a special quadrupole geometry which provides magnetic immunity when used in a balanced line. Four conductors are used to carry the two legs of the balanced line. All four conductors must be an ...
to provide immunity to magnetic fields. The geometry of the cable ensures that magnetic fields will cause equal interference of both legs of the balanced circuit. This balanced interference is a common-mode signal that can easily be removed by a transformer or balanced differential receiver.
A balanced line allows a
differential receiver to reduce the
noise on a connection by rejecting
common-mode interference. The lines have the same
impedance to ground, so the interfering fields or currents induce the same voltage in both wires. Since the receiver responds only to the difference between the wires, it is not influenced by the induced noise voltage. If a balanced line is used in an unbalanced circuit, with different impedances from each conductor to ground, currents induced in the separate conductors will cause different voltage drops to ground, thus creating a voltage differential, making the line more susceptible to noise. Examples of twisted pairs include
category 5 cable
Category 5 cable (Cat 5) is a twisted pair cable for computer networks. Since 2001, the variant commonly in use is the Category 5e specification (Cat 5e). The cable standard provides performance of up to 100 MHz and is ...
.
Compared to
unbalanced lines, balanced lines reduce the amount of noise per distance, allowing a longer cable run to be practical. This is because electromagnetic interference will affect both signals the same way. Similarities between the two signals are automatically removed at the end of the transmission path when one signal is subtracted from the other.
Telephone systems
The first application for balanced lines was for telephone lines. Interference that was of little consequence on a telegraph system (which is in essence digital) could be very disturbing for a telephone user. The initial format was to take two single-wire unbalanced telegraph lines and use them as a pair. This proved insufficient, however, with the growth of electric power transmission which tended to use the same routes. A telephone line running alongside a power line for many miles will inevitably have more interference induced in one leg than the other since one of them will be nearer to the power line. This issue was addressed by swapping the positions of the two legs every few hundred yards with a cross-over, thus ensuring that both legs had equal interference induced and allowing common-mode rejection to do its work. As the telephone system grew, it became preferable to use cable rather than open wires to save space, and also to avoid poor performance during bad weather. The cable construction used for balanced telephone cables was
twisted pair; however, this did not become widespread until repeater amplifiers became available. For an unamplified telephone line, a twisted pair cable could only manage a maximum distance of 30 km. Open wires, on the other hand, with their lower capacitance, had been used for enormous distances—the longest was the 1500 km from New York to Chicago built in 1893.
Loading coils
A loading coil or load coil is an inductor that is inserted into an electronic circuit to increase its inductance. The term originated in the 19th century for inductors used to prevent signal distortion in long-distance telegraph transmission c ...
were used to improve the distance achievable with cable but the problem was not finally overcome until amplifiers started to be installed in 1912.
Twisted pair balanced lines are still widely used for
local loops, the lines that connect each subscriber's premises to their respective
exchange.
Telephone
trunk lines, and especially
frequency division multiplexing carrier systems, are usually 4-wire circuits rather than 2-wire circuits (or at least they were before
fibre-optic became widespread) and require a different kind of cable. This format requires the conductors to be arranged in two pairs, one pair for the sending (go) signal and the other for the return signal. The greatest source of interference on this kind of transmission is usually the crosstalk between the go and return circuits themselves. The most common cable format is
star quad
In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmis ...
, where the diagonally opposite conductors form the pairs. This geometry gives maximum common mode rejection between the two pairs. An alternative format is DM (Dieselhorst-Martin) quad which consists of two twisted pairs with the twisting at different pitches.
Audio systems
An example of balanced lines is the connection of
microphones to a mixer in professional systems. Classically, both dynamic and condenser microphones used
transformers to provide a differential-mode signal. While transformers are still used in the large majority of modern dynamic microphones, more recent condenser microphones are more likely to use electronic drive circuitry. Each leg, irrespective of any signal, should have an identical impedance to ground. Pair cable (or a pair-derivative such as
star quad
In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmis ...
) is used to maintain the balanced impedances and close twisting of the cores ensures that any interference is common to both conductors. Providing that the receiving end (usually a
mixing console) does not disturb the line balance, and is able to ignore common-mode (noise) signals, and can extract differential ones, then the system will have excellent immunity to induced interference.
Typical professional audio sources, such as microphones, have three-pin
XLR connectors. One connects to the shield or chassis ground, while the other two are for the signal conductors. The signal wires can carry two copies of the same signal with opposite polarity (
differential signalling) but need not do so. They are often termed "hot" and "cold," and the AES14-1992(r2004) Standard
nd EIA Standard RS-297-Asuggest that the pin that carries the positive signal that results from a positive air pressure on a transducer will be deemed 'hot'. Pin 2 has been designated as the 'hot' pin, and that designation serves useful for keeping a consistent polarity in the rest of the system. Since these conductors travel the same path from source to destination, the assumption is that any interference is induced upon both conductors equally. The appliance receiving the signals compares the difference between the two signals (often with disregard to electrical ground) allowing the appliance to ignore any induced electrical noise. Any induced noise would be present in equal amounts and in identical polarity on each of the balanced signal conductors, so the two signals’ difference from each other would be unchanged. The successful rejection of induced noise from the desired signal depends in part on the balanced signal conductors receiving the same amount and type of interference. This typically leads to twisted, braided, or co-jacketed cables for use in balanced signal transmission.
Balanced and differential
Many explanations of balanced lines assume symmetric signals (i.e. signals equal in magnitude but of opposite polarity) but this can lead to confusion of the two concepts—signal symmetry and balanced lines are quite independent of each other.
Essential in a balanced line is identical impedances in the two conductors in the driver, line and receiver (impedance balancing). These conditions ensure that external noise affects each leg of the line equally and thus appears as a common mode signal that is rejected by the receiver.
There are balanced drive circuits that have excellent common-mode impedance balancing between the legs but do ''not'' provide symmetric signals. Symmetric differential signals concern headroom and are not necessary for interference rejection.
[G. Ballou, ''Handbook for Sound Engineers'', Fifth Edition, Taylor & Francis, 2015, p. 1267. “Two signal voltages have symmetry when they have equal magnitudes but opposite polarities. Symmetry of the desired signal has advantages, but they concern head room and crosstalk, not noise or interference rejection.”]
Baluns
Interfacing balanced and unbalanced lines requires a
balun. For example, baluns can be used to send
line level audio or
E-carrier level 1 signals over coaxial cable (which is unbalanced) through of balanced
category 5 cable
Category 5 cable (Cat 5) is a twisted pair cable for computer networks. Since 2001, the variant commonly in use is the Category 5e specification (Cat 5e). The cable standard provides performance of up to 100 MHz and is ...
by using a pair of baluns at each end of the CAT5 run. As the signal travels through the balanced line, noise is induced and added to the signal. As the CAT5 line is carefully impedance balanced, the noise induces equal (common-mode) voltages in both conductors. At the receiving end, the balun responds only to the difference in voltage between the two conductors, thus rejecting the noise picked up along the way and leaving the original signal intact.
A once common application of a
radio frequency balun was found at the antenna terminals of a
television receiver. Typically a 300-ohm balanced
twin lead antenna input could only be connected to a coaxial cable from a cable TV system through a balun.
Characteristic impedance
The
characteristic impedance
The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in ...
of a transmission line is an important parameter at higher frequencies of operation. For a parallel 2-wire transmission line,
:
where
is half the distance between the wire centres,
is the wire radius and
,
are respectively the
permeability and
permittivity of the surrounding medium. A commonly used approximation that is valid when the wire separation is much larger than the wire radius and in the absence of magnetic materials is
:
where
is the
relative permittivity of the surrounding medium.
Electric power lines
In
electric power transmission
Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a ''transmission network''. This is ...
, the three conductors used for
three-phase power transmission are referred to as a balanced line since the instantaneous sum of the three line voltages is nominally zero. However, ''balance'' in this field is referring to the symmetry of the source and load: it has nothing to do with the impedance balance of the line itself, the sense of the meaning in telecommunications.
For the transmission of
single-phase electric power
In electrical engineering, single-phase electric power (abbreviated 1φ) is the distribution of alternating current electric power using a system in which all the voltages of the supply vary in unison. Single-phase distribution is used when load ...
as used for
railway electrification system
A railway electrification system supplies electric power to railway trains and trams without an on-board prime mover or local fuel supply.
Electric railways use either electric locomotives (hauling passengers or freight in separate cars), ele ...
s, two conductors are used to carry in-phase and out-of-phase voltages such that the line is balanced.
Bipolar HVDC lines at which each pole is operated with the same voltage toward ground are also balanced lines.
See also
*
Differential pair
*
Twinaxial cabling
*
Twisted-pair cable
Twisted pair cabling is a type of wiring used for communications in which two conductors of a single Electronic circuit, circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a Single-ended signa ...
Balanced transmission standards
*
Ethernet over twisted pair
*
RS-422
*
RS-485
*
Low-voltage differential signalling (LVDS)
References
External links
Balanced Lines, Phantom Powering, Grounding, and Other Arcane Mysteries– from
Mackie;
{{DEFAULTSORT:Balanced Line
Communication circuits