Bagnold's Fluid
   HOME

TheInfoList



OR:

Bagnold's fluid refers to a
suspension Suspension or suspended may refer to: Science and engineering * Suspension (topology), in mathematics * Suspension (dynamical systems), in mathematics * Suspension of a ring, in mathematics * Suspension (chemistry), small solid particles suspend ...
of neutrally buoyant particles in a
Newtonian fluid A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of chang ...
such as water or air. The term is named after
Ralph Alger Bagnold Brigadier Ralph Alger Bagnold, OBE, FRS, (3 April 1896 – 28 May 1990) was an English 20th-century desert explorer, geologist and soldier. In 1932, he staged the first recorded East-to-West crossing of the Libyan Desert. His work in the ...
, who placed such a suspension in an annular
coaxial In geometry, coaxial means that several three-dimensional linear or planar forms share a common axis. The two-dimensional analog is ''concentric''. Common examples: A coaxial cable is a three-dimensional linear structure. It has a wire conduc ...
cylindrical
rheometer A rheometer is a laboratory device used to measure the way in which a dense fluid (a liquid, suspension or slurry) flows in response to applied forces. It is used for those fluids which cannot be defined by a single value of viscosity and t ...
in order to investigate the effects of grain interaction in the suspension.


Constitutive relations

By experiments described in his 1954 paper, Bagnold showed that when a
shear flow The term shear flow is used in solid mechanics as well as in fluid dynamics. The expression ''shear flow'' is used to indicate: * a shear stress over a distance in a thin-walled structure (in solid mechanics);Higdon, Ohlsen, Stiles and Weese (1960) ...
is applied to the suspension, then the shear and normal stresses in the suspension may vary linearly or quadratically with the
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
, depending on the strength of
viscous The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inter ...
effects compared to the particles'
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
. If the shear and normal stresses in the mixture (suspension: mixture of
solid Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
and
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
) vary quadratically with the
shear rate In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material. Simple shear The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary ...
, the flow is said to satisfy ''Bagnold’s grain-inertia flow''. If this relation is linear, then the motion is said to satisfy ''Bagnold’s macro-viscous flow''. These relationships, particularly the quadratic relationship, are referred to as the Bagnold rheology. Although Bagnold used wax spheres suspended in a glycerin-water-alcohol mixture, many subsequent shear-cell experiments for both wet and dry mixtures, as well as
computer simulation Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be dete ...
s, have confirmed these relations. Bagnold's
rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid ( liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an appl ...
can be used to describe
debris Debris (, ) is rubble, wreckage, ruins, litter and discarded garbage/refuse/trash, scattered remains of something destroyed, or, as in geology, large rock fragments left by a melting glacier, etc. Depending on context, ''debris'' can refer to ...
and granular flows down inclined
slope In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is use ...
s.


Explanation

For low shear rates, dilute suspensions or suspensions involving small particles, the viscosity of the fluid is a much stronger effect than the inertia of the particles. The particles do not interact strongly with each other. By considering the forces on a particle in a fluid in the Stokes regime, it can be shown that the presence of the particle simply increases the 'effective viscosity' of the fluid. At high shear rates, the inertia of the particles is the dominant effect, and the suspension's behaviour is governed by collisions between particles. In his 1954 paper, Bagnold justified the quadratic relationship by collisional arguments. He considered an idealised situation in which layers of particles are regular, and slide and collide regularly with each other. Then the
impulse Impulse or Impulsive may refer to: Science * Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time * Impulse noise (disambiguation) * Specific impulse, the change in momentum per uni ...
of each collision between particles is proportional to the shear rate, and so is the number of collisions per unit time; and hence the total impulse on a particle per unit time is proportional to the square of the shear rate.


Sedimentation

If the particles in the suspension are not neutrally buoyant, then the additional effect of
settling Settling is the process by which particulates move towards the bottom of a liquid and form a sediment. Particles that experience a force, either due to gravity or due to centrifugal motion will tend to move in a uniform manner in the direction e ...
also takes place. Pudasaini (2011) used the above constitutive relations to establish a scaling law for the sedimentation time. It is found analytically that the macro-viscous fluid settles much faster than the grain-inertia fluid, as manifested by dispersive
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
. Given the same time, the macroviscous fluid is settled 6/5 unit length compared to the unit length settlement of the grain-inertia fluid as measured from the nose-tip of the flowfront that has already settled to the back side of the debris. Therefore, the macroviscous fluid settles (completely stops to flow) 20% faster than the grain-inertia fluid. Due to the dispersive pressure in grain-inertia fluid, the settlement process is delayed by 20% for the grain-inertia fluid than for the macroviscous fluid. This is meaningful because particles are more agitated due to higher dispersive pressure in grain-inertia fluids than in macroviscous fluids. Once the material comes close to rest, these dispersive forces (induced by the quadratic shear rate), are still active for grain-inertia fluid but macroviscous fluid settles relatively faster because it is less dispersive. This provides a tool to approximate and estimate the final settlement time (the time at which the entire fluid body is at rest). These are mechanically important relationships concerning the settlement time and the settlement lengths between the grain-inertia and the macroviscous fluids.


References

{{reflist Fluid dynamics