Bacterial One-hybrid System
   HOME

TheInfoList



OR:

The bacterial one-hybrid (B1H) system is a method for identifying the sequence-specific target site of a
DNA-binding domain A DNA-binding domain (DBD) is an independently folded protein domain that contains at least one structural motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence (a recognition sequence) or have a genera ...
. In this system, a given
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fu ...
(TF) is expressed as a fusion to a subunit of
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens the ...
. In parallel, a library of randomized oligonucleotides representing potential TF target sequences are cloned into a separate vector containing the selectable genes
HIS3 The HIS3 gene, found in the ''Saccharomyces cerevisiae'' yeast, encodes a protein called Imidazoleglycerol-phosphate dehydratase which catalyses the sixth step in histidine biosynthesis. It is analogous to hisB in ''Escherichia coli''. Exploi ...
and
URA3 URA3 is a gene on chromosome V in ''Saccharomyces cerevisiae'' (yeast). Its systematic name is YEL021W. URA3 is often used in yeast research as a "marker gene", that is, a gene to label chromosomes or plasmids. URA3 encodes Orotidine 5'-phosphate ...
. If the DNA-binding domain (bait) binds a potential DNA target site (prey) ''in vivo'', it will recruit RNA polymerase to the promoter and activate
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
of the
reporter gene In molecular biology, a reporter gene (often simply reporter) is a gene that researchers attach to a regulatory sequence of another gene of interest in bacteria, cell culture, animals or plants. Such genes are called reporters because the charac ...
s in that clone. The two reporter genes, HIS3 and URA3, allow for positive and negative selections, respectively. At the end of the process, positive clones are sequenced and examined with motif-finding tools in order to resolve the favoured DNA target sequence.


Introduction

Across all living organisms,
regulation of gene expression Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wide ...
is controlled by interactions between DNA-binding regulatory proteins (transcription factors) and
cis-regulatory element ''Cis''-regulatory elements (CREs) or ''Cis''-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes. CREs are vital components of genetic regulatory networks, which in turn control morphoge ...
s, DNA sequences in or around genes that act as target sites for DNA-binding proteins. By binding to cis-regulatory sequences and to each other, transcription factors fine-tune transcriptional levels by stabilizing/destabilizing binding of RNA polymerase to a gene's promoter. But despite their importance and ubiquity, little is known about where exactly each of these regulatory proteins binds. Literature suggests that nearly 8% of human genes encode transcription factors and the functions and specificities of their interactions remain largely unexplored. We are on the brink of a convergence of high-throughput technologies and genomic theory that is allowing researchers to start mapping these interactions on a genome-wide scale. Only recently has a complete survey of DNA-binding specificities been attempted for a large family of DNA-binding domains. B1H is just one emerging technique among many that is useful for studying protein–DNA interactions.


Method overview

Transformation Transformation may refer to: Science and mathematics In biology and medicine * Metamorphosis, the biological process of changing physical form after birth or hatching * Malignant transformation, the process of cells becoming cancerous * Trans ...
of a bacterial host with two different
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
s is required. One is designed to express a DNA-binding protein-of-interest as a fusion construct with a subunit of RNA polymerase (bait). The other plasmid contains a region of randomized sequence representing potential binding sites (prey) which, if bound to by the chimeric fusion product, drives expression of downstream reporter genes. This reporter region facilitates both positive and negative selection by HIS3 and URA3, respectively, which together allow for isolation of the prey containing the true DNA target sequence. HIS3 and URA3 encode proteins required for
biosynthesis Biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. ...
of histidine and uracil. Using a negative selectable marker is crucial for greatly reducing the incidence of false-positives. Self-activating prey, where the randomized region facilitate reporter expression in the absence of TF binding, are removed by transforming the reporter vector library into bacteria in the absence of bait and assaying for growth on plates containing 5-fluoro-orotic acid (5-FOA). The protein product of URA3 converts 5-FOA into a toxic compound, thereby allowing survival of only those colonies that contain reporter vectors which are not self-activating. Negative selection normally precedes positive selection so that a smaller, purified prey library can be subjected to the more rigorous positive selection process. Upon transformation of the purified prey library with the bait plasmid, positive selection is achieved by growing the host E. coli on minimal medium lacking histidine (NM selective medium) that is usually supplemented with varying concentrations of 3-amino-triazole (3-AT), a competitive inhibitor of HIS3. HIS3 encodes a protein required for histidine biosynthesis and thus only those cells containing bait-prey combinations that activate the reporter genes will be able to grow. Manipulating 3-AT concentrations allows for the characterization of binding stringencies. In this way, researches can gauge how strongly bait binds its prey (correlated with the level of expression of HIS3) and thus determines which nucleotide binding-sites have strong or weak preferences for a given base. In other words, if cells can grow despite a high concentration of 3-AT, bait-prey binding must be of high enough stringency to drive reporter gene expression (HIS3) at a sufficient level to overcome the resulting competitive inhibition. Finally, positive clones are sequenced and examined with preexisting motif-finding tools (ex, MEME, BioProspector).


History of method

The bacteria one-hybrid system has undergone numerous modifications since its inception in 2005. It ultimately arose as a variation of the bacteria two-hybrid system, conceived in 2000, which itself was inspired by the yeast one- and two-hybrid systems. Whereas the two-hybrid versions can assess both
protein–protein interaction Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and th ...
and protein–DNA interactions, the one-hybrid system specializes in the latter. Meng et al.’s B1H system differs from the two-hybrid version in two key respects. It uses a randomized prey library consisting of many (<2x108) unique potential target sequences and also adds a negative selection step in order to purge this library of self-activating clones. Although these ideas were borrowed from the original yeast one-hybrid system, they had not yet been applied to a bacterial host before 2005. As the technique grew in popularity, researchers amended their protocols to improve the B1H system. Designing the fusion construct (bait) to the omega, rather than the alpha, subunit of RNA polymerase has recently been favoured in order to improve the chimera’s stereochemistry and dynamic range. A
zinc-finger A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) in order to stabilize the fold. It was originally coined to describe the finger-like appearance of a hypothesized struc ...
domain on the fusion construct and its corresponding DNA target site, adjacent to the randomized prey sequence, has also been added to the increases affinity and specificity of protein–DNA interactions. This increased overall binding affinity allows for the characterization of even those DNA-binding domain proteins which interact weakly with a target sequence. .


Advantages

The B1H system has significant advantages over other methods that investigate protein–DNA interactions. Microarray-based readout of chromatin immunoprecipitation (
ChIP-chip ChIP-on-chip (also known as ChIP-chip) is a technology that combines chromatin immunoprecipitation ('ChIP') with DNA microarray (''"chip"''). Like regular ChIP, ChIP-on-chip is used to investigate interactions between proteins and DNA '' in viv ...
) for high-throughput binding-site determination relies on specific antibodies which may not always be available. Methods that rely on protein-binding microarrays also require additional protein purification steps that are not required in the B1H system. Furthermore, these microarray-based techniques are often prohibitive in terms of requiring special facilities and expertise to analyze the resulting data. SELEX, another system commonly used to identify the target nucleic acids for DNA-binding proteins, requires multiple rounds of selection. In contrast, the bacterial one-hybrid system requires just one round of in vitro selection and also offers a low-tech alternative to microarray-based technologies. Antibodies are not required for studying the interactions of DNA-binding proteins in the B1H system. A further advantage is that the B1H system works not only for monomeric proteins but also for proteins that bind DNA as complexes. The B1H system should be considered a specialized technique for studying DNA-protein interactions whereas the two-hybrid variations ( B2H and Y2H) can assess both protein–protein and protein–DNA interactions. These two-hybrid systems are multi-purpose but are limited in terms of assaying only a single “prey” library. An advantage of the bacterial one-hybrid system over the yeast one-hybrid system (Y1H) lies in the higher transformation efficiency of plasmids into bacteria which allows for more complex “prey” libraries to be examined.


Limitations

Despite its aforementioned advantages as a specialized tool, the B1H system does have some drawbacks. First, the B1H selection system is limited in its capacity to determine the binding specificities of transcription factors with lengthy binding sites. This arises from the fact that the number of randomized “prey” clones required to represent all possible target sequences increases exponentially with the number of nucleotides in that target sequence. Second, some eukaryotic factors may not express or fold efficiently in the bacterial system, attributed to differing regulatory networks and transcriptional machinery. Hence when working with DNA-binding proteins of eukaryotic origin, a yeast-based hybrid system may be beneficial. Third, the B1H system may not be ideally suited for transcription factors that recognize binding sites with low affinity. The logic here is that competition created by binding sites elsewhere in the bacterial genome may limit the signal that can be realized from a single binding site that is present upstream of the reporter.


Application

B1H system provides a tool in our arsenal for identifying the DNA-binding specificities of transcription factors and thus predicting their target genes and genomic DNA regulatory elements. It also allows for examination of the effects of protein–protein interactions on DNA binding, which may further guide the prediction of cis regulatory modules based on binding-site clustering. Moreover, the B1H selection system has implications for the predicting regulatory roles of previously uncharacterized transcription factors.


Specific examples

Using the bacterial one-hybrid system, one study has characterized 35 members of the Drosophila melanogaster segmentation network which includes representative members of all the major classes of DNA-binding domain proteins. Implications for medical research are evident from another study that used the B1H system to identify the DNA-binding specificity of a transcriptional regulator for a gene in
Mycobacterium tuberculosis ''Mycobacterium tuberculosis'' (M. tb) is a species of pathogenic bacteria in the family Mycobacteriaceae and the causative agent of tuberculosis. First discovered in 1882 by Robert Koch, ''M. tuberculosis'' has an unusual, waxy coating on its c ...
. The B1H system has also been used to identify an important turnover element in Escherichia coli.


External links

* https://web.archive.org/web/20090320023431/http://lawsonlab.umassmed.edu/PDFs/B1HStart.pdf * http://www.umassmed.edu/pgfe/faculty/wolfe.cfm?start=0&


References

{{DEFAULTSORT:Bacterial One-Hybrid System Molecular genetics