Counter-electromotive force (counter EMF, CEMF, back EMF),
[Graf, "counterelectromotive force", Dictionary of Electronics] is the
electromotive force
In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal or ) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transd ...
(EMF) manifesting as a
voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
that opposes the change in
current
Currents, Current or The Current may refer to:
Science and technology
* Current (fluid), the flow of a liquid or a gas
** Air current, a flow of air
** Ocean current, a current in the ocean
*** Rip current, a kind of water current
** Current (stre ...
which induced it. CEMF is the EMF caused by
electromagnetic induction
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field.
Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk ...
.
Details
For example, the voltage appearing across an
inductor
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
or
coil is due to a change in current which causes a change in the
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
within the coil, and therefore the self-induced voltage.
The
polarity
Polarity may refer to:
Science
*Electrical polarity, direction of electrical current
*Polarity (mutual inductance), the relationship between components such as transformer windings
* Polarity (projective geometry), in mathematics, a duality of ord ...
of the voltage at every moment opposes that of the change in applied voltage, to keep the current constant.
The term ''back electromotive force'' is also commonly used to refer to the voltage that occurs in
electric motor
An electric motor is an Electric machine, electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a Electromagneti ...
s where there is relative motion between the
armature and the
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
produced by the motor's field coils or permanent magnet field, thus also acting as a generator while running as a motor. This effect is not due to the motor's inductance, which generates a voltage in opposition to a changing current via Faraday's law, but a separate phenomenon. That is, the back-EMF is also due to inductance and Faraday's law, but occurs even when the motor current is not changing, and arises from the geometric considerations of an armature spinning in a magnetic field.
This voltage is in series with and opposes the original applied voltage and is called "back-electromotive force" (by
Lenz's law
Lenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after p ...
). With a lower overall voltage across the motor's
internal resistance
A practical electrical power source which is a linear electric circuit may, according to Thévenin's theorem, be represented as an ideal voltage source in series with an impedance. This impedance is termed the internal resistance of the source. ...
as the motor turns faster, the current flowing into the motor decreases. One practical application of this phenomenon is to indirectly measure motor speed and position, as the back-EMF is proportional to the rotational speed of the armature.
In motor control and robotics, back-EMF often refers most specifically to actually using the voltage generated by a spinning motor to infer the speed of the motor's rotation, for use in better controlling the motor in specific ways.
["Back EMF Motion Feedback]
Back EMF Motion Feedback
/ref>
To observe the effect of back-EMF of a motor, one can perform this simple exercise: with an incandescent light on, cause a large motor such as a drill press, saw, air conditioner compressor, or vacuum cleaner to start. The light may dim briefly as the motor starts. When the armature is not turning (called locked rotor) there is no back-EMF and the motor's current draw is quite high. If the motor's starting current is high enough, it will pull the line voltage down enough to cause noticeable dimming of the light.
References
External links
in access control applications''
{{DEFAULTSORT:Counter-Electromotive Force
Electromagnetism