BNIP3
   HOME

TheInfoList



OR:

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
that in humans is encoded by the ''BNIP3''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
. BNIP3 is a member of the
apoptotic Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes includ ...
Bcl-2 protein family. It can induce cell death while also assisting with cell survival. Like many of the Bcl-2 family proteins, BNIP3 modulates the permeability state of the outer mitochondrial membrane by forming homo- and hetero-oligomers inside the membrane. Upregulation results in a decrease in mitochondrial potential, an increase in reactive oxygen species, mitochondrial swelling and fission, and an increase in mitochondrial turnover via autophagy. Sequence similarity with Bcl-2 family members was not detected. Humans and other animals (''
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species ...
,
Caenorhabditis ''Caenorhabditis'' is a genus of nematodes which live in bacteria-rich environments like compost piles, decaying dead animals and rotting fruit. The name comes from Greek: caeno- (καινός (caenos) = new, recent); rhabditis = rod-like (ῥά ...
''), as well as lower eukaryotes (''
Dictyostelium ''Dictyostelium'' is a genus of single- and multi-celled eukaryotic, phagotrophic bacterivores. Though they are Protista and in no way fungal, they traditionally are known as "slime molds". They are present in most terrestrial ecosystems as ...
,
Trypanosoma ''Trypanosoma'' is a genus of kinetoplastids (class Trypanosomatidae), a monophyletic group of unicellular parasitic flagellate protozoa. Trypanosoma is part of the phylum Sarcomastigophora. The name is derived from the Greek ''trypano-'' (bore ...
,
Cryptosporidium ''Cryptosporidium'', sometimes informally called crypto, is a genus of apicomplexan parasitic alveolates that can cause a respiratory and gastrointestinal illness (cryptosporidiosis) that primarily involves watery diarrhea (intestinal cryptosp ...
,
Paramecium '' ''Paramecium'' ( , ; also spelled ''Paramoecium'') is a genus of eukaryotic, unicellular ciliates, commonly studied as a representative of the ciliate group. ''Paramecia'' are widespread in freshwater, brackish, and marine environments and a ...
'') encode several BNIP3 paralogues including the human NIP3L, which induces apoptosis by interacting with viral and cellular anti-apoptosis proteins.


Structure

The right-handed parallel helix-helix structure of the domain with a
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
-rich ''His-Ser'' node in the middle of the membrane, accessibility of the node for water, and continuous hydrophilic track across the membrane suggest that the domain can provide an ion-conducting pathway through the membrane. Incorporation of the BNIP3
transmembrane domain A transmembrane domain (TMD) is a membrane-spanning protein domain. TMDs generally adopt an alpha helix topological conformation, although some TMDs such as those in porins can adopt a different conformation. Because the interior of the lipid bil ...
into an artificial lipid bilayer resulted in a pH-dependent conductivity increase. Necrosis-like cell death induced by BNIP3 may be related to this activity.


Function

BNIP3 interacts with the E1B 19 kDa protein which is responsible for the protection of virally induced cell death, as well as E1B 19 kDa-like sequences of BCL2, also an apoptotic protector. This gene contains a BH3 domain and a transmembrane domain, which have been associated with pro-apoptotic function. The dimeric mitochondrial protein encoded by this gene is known to induce apoptosis, even in the presence of BCL2. Change of BNIP3 expression along other members of the Bcl-2 family measured by qPCR captures important characteristics of malignant transformation, and are defined as markers of resistance toward cell death, a key hallmark of cancer.


Transport reaction

The reaction catalyzed by BNIP3 is: :small molecules (out) ⇌ small molecules (in)


Autophagy

Autophagy is important for recycling cellular contents and prolonging cell life. Hanna et al. show that BNIP3 and LC3 interact to remove endoplasmic reticulum and mitochondria. When inactive BNIP3 is activated on the membrane of the mitochondria, they form homodimers where LC3 can bind to the LC3-interacting region (LIR) motif on BNIP3 and facilitates the formation of an autophagosome. Interestingly, when disrupting BNIP3 and LC3 interaction, researchers found that autophagy was reduced but not completely erased. This suggests that BNIP3 is not the only receptor on the mitochondria and ER to promote autophagy. This relationship between autophagy and BNIP3 is widely supported in many studies. In ceramide- and arsenic trioxide- treated malignant glioma cells, increased BNIP3 expression led to mitochondrial depolarization and autophagy.


Autophagic cell death

Increased expression of BNIP3 has been shown to induce cell death in different ways in multiple cell lines. BNIP3 can induce classical apoptosis through cytochrome c and caspase activation in some cells, while in others, cells have undergone autophagic cell death, occurring in the absence of apaf-1, caspase-1 or caspase 3, and without cytochrome c release. However, it still remains unclear if cell death is from excess autophagy itself or another mechanism. Cell death through excessive autophagy has only been shown experimentally and not in mammalian ''in vivo'' models. Kroemer and Levine believe that this name is a misnomer because cell death usually occurs with autophagy rather than by autophagy.


NK cell memory formation

The innate immune system is generally not known to exhibit memory traits, but emerging research has proven otherwise. In 2017, O’Sullivan et al. found that BNIP3 and BNIP3L play a necessary role in promoting NK cell memory formation. Expression of BNIP3 in NK cells is lowered upon viral infection as NK cell proliferation occurs but returns to its basal amounts by day 14 and through the contraction phase. By using BNIP3-knockout mice, they found a significant decrease in surviving NK cells suggesting they are important to maintain survival of NK memory cells. Additionally, by tracking mitochondria amounts and quality, they found that BNIP3 is necessary for clearing dysfunctional mitochondria with low membrane potential and reducing the build up of ROS to promote cell survival. BNIP3L was also tested and was found to play a nonredundant role in cell survival.


Activities in the mitochondrial membrane


Integration

Various stimuli like decreased intracellular pH, increased cytosolic calcium concentrations, and other toxic stimuli can induce BNIP3 integration into the outer mitochondrial membrane (OMM). When integrated, its N-terminus remains in the cytoplasm while it stays anchored to the OMM via its C-terminal transmembrane domain (TMD). The TMD is essential for targeting BNIP3 to the mitochondria, homodimerization, and pro-apoptotic function. Its deletion results in the inability to induce autophagy. Once integrated in the OMM, BNIP3 exists as an inactive monomer until activated.


Activation

Upon activation, BNIP3 can form heterodimers with BCL2 and BCL-XL and bind to itself. Various conditions have been shown to induce activation and upregulation. Hypoxia has been shown to induce transcriptional upregulation of BNIP3 through an HIF1-dependent pathway in a p53-independent manner in HeLa cells, human skeletal muscle cells, and adult rat cardiomyocytes. Using BNIP3 phosphomimetics in HEK 293 cells, researchers found that phosphorylation of BNIP3's C-terminus is necessary to prevent mitochondrial damage and promote cell survival by allowing a significant amount of autophagy to occur without the induction of cell death. Factors like cAMP and cGMP levels, calcium availability and growth factors like IGF and EGF can affect this kinase activity.


Interactions

BNIP3 has been shown to interact with
CD47 CD47 (Cluster of Differentiation 47) also known as integrin associated protein (IAP) is a transmembrane protein that in humans is encoded by the CD47 gene. CD47 belongs to the immunoglobulin superfamily and partners with membrane integrins and ...
, BCL2-like 1 and
Bcl-2 Bcl-2 (B-cell lymphoma 2), encoded in humans by the ''BCL2'' gene, is the founding member of the Bcl-2 family of regulator proteins that regulate cell death (apoptosis), by either inhibiting (anti-apoptotic) or inducing (pro-apoptotic) apoptosis. ...
.


References


Further reading

* * * * * * * * * * * * * * * *


External links

* {{CCBYSASource, sourcepath= http://www.tcdb.org/search/result.php?tc=1.a.20, sourcearticle= 1.A.20 The BCL2/Adenovirus E1B-interacting Protein 3 (BNip3) Family , revision=699838558 Protein families Membrane proteins Transmembrane proteins Transmembrane transporters Transport proteins Integral membrane proteins