HOME

TheInfoList



OR:

Autorotation is a state of flight in which the main rotor system of a
helicopter A helicopter is a type of rotorcraft in which lift and thrust are supplied by horizontally spinning rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward and laterally. These attribu ...
or other rotary-wing aircraft turns by the action of air moving up through the rotor, as with an autogyro, rather than engine power driving the rotor. Bensen, Igor.
How they fly – Bensen explains all
" ''Gyrocopters UK''. Accessed: 10 April 2014. Quote: "air.. (is) deflected downward"
Charnov, Bruce H
Cierva, Pitcairn and the Legacy of Rotary-Wing Flight
''
Hofstra University Hofstra University is a private university in Hempstead, New York. It is Long Island's largest private university. Hofstra originated in 1935 as an extension of New York University (NYU) under the name Nassau College – Hofstra Memorial of New ...
''. Accessed: 22 November 2011.
The term ''autorotation'' dates to a period of early helicopter development between 1915 and 1920, and refers to the rotors turning without the engine."Autorotation", ''Dictionary.com Unabridged (v 1.1)''. Random House, Inc. 17 April 2007
It is analogous to the gliding flight of a fixed-wing aircraft. Autorotation has also evolved to be used by certain trees as a means of disseminating their seeds further. The most common use of autorotation in helicopters is to safely land the aircraft in the event of an engine failure or tail-rotor failure. It is a common emergency procedure taught to helicopter pilots as part of their training. In normal powered helicopter flight, air is drawn into the main rotor system from above and exhausted downward, but during autorotation, air moves up into the rotor system from below as the helicopter descends. Autorotation is permitted mechanically because of both a freewheeling unit, which allows the main rotor to continue turning even if the engine is not running, as well as aerodynamic forces of relative wind maintaining rotor speed. It is the means by which a helicopter can land safely in the event of complete engine failure. Consequently, all single-engine helicopters must demonstrate this capability to obtain a
type certificate A type certificate signifies the airworthiness of a particular category of aircraft, according to its manufacturing design (''type design''). It confirms that the aircraft of a new type intended for serial production, is in compliance with applic ...
. The longest autorotation in history was performed by
Jean Boulet Jean Boulet (16 November 1920, Brunoy – 13 February 2011, Aix-en-Provence) was a French aviator. In 1957, Boulet was awarded the Aeronautical Medal; in 1983, he became one of the founding members of the French National Air and Space Academy. ...
in 1972 when he reached a record altitude of 12,440 m (40,814 ft) in an
Aérospatiale SA 315B Lama The Aérospatiale SA 315B Lama is a French single-engined helicopter developed to meet hot and high operational requirements of the Indian Armed Forces. It combines the lighter Aérospatiale Alouette II airframe with Alouette III components and ...
. Because of a −63 °C (−81.4 °F) temperature at that altitude, as soon as he reduced power, the engine flamed out and could not be restarted. By using autorotation he was able to land the aircraft safely.


Descent and landing

For a helicopter, "autorotation" refers to the descending maneuver in which the engine is disengaged from the main rotor system and the rotor blades are driven solely by the upward flow of air through the rotor. The ''freewheeling unit'' is a special clutch mechanism that disengages any time the engine rotational speed is less than the rotor rotational speed. If the engine fails, the freewheeling unit automatically disengages the engine from the main rotor, allowing the main rotor to rotate freely. The most common reason for autorotation is an engine malfunction or failure, but autorotation can also be performed in the event of a complete tail rotor failure, or following
loss of tail-rotor effectiveness Loss of tail-rotor effectiveness (LTE)Rotorcraft Flying Handbook Section 11-12, Federal Aviation Administration, Skyhorse Publishing (July 2007) occurs when the tail rotor of a helicopter is exposed to wind forces that prevent it from carrying ...
, since there is virtually no
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
produced in an autorotation. If altitude permits, autorotations may also be used to recover from a vortex ring state, also known as
settling with power The vortex ring state (VRS) is a dangerous aerodynamic condition that may arise in helicopter flight, when a vortex ring system engulfs the rotor, causing severe loss of lift. The vortex ring state is sometimes referred to as settling with pow ...
. In all cases, a successful landing depends on the helicopter's height and velocity at the commencement of autorotation (see height-velocity diagram). At the instant of engine failure, the main rotor blades are producing lift and
thrust Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that ...
from their
angle of attack In fluid dynamics, angle of attack (AOA, α, or \alpha) is the angle between a reference line on a body (often the chord line of an airfoil) and the vector representing the relative motion between the body and the fluid through which it is m ...
and
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
. By immediately lowering
collective pitch A helicopter pilot manipulates the helicopter flight controls to achieve and maintain controlled aerodynamic flight. Changes to the aircraft flight control system transmit mechanically to the rotor, producing aerodynamic effects on the rotor bla ...
, which must be done in case of an engine failure, the pilot reduces lift and drag and the helicopter begins an immediate descent, producing an upward flow of air through the rotor system. This upward flow of air through the rotor provides sufficient thrust to maintain rotor rotational speed throughout the descent. Since the tail rotor is driven by the main rotor transmission during autorotation, heading control is maintained as in normal flight. Several factors affect the rate of descent in autorotation: density altitude, gross weight, rotor rotational speed, and forward airspeed. The pilot's primary control of the rate of descent is airspeed. Higher or lower airspeeds are obtained with the cyclic pitch control just as in normal flight. Rate of descent is high at zero airspeed and decreases to a minimum at approximately 50 to 90 knots, depending upon the particular helicopter and the factors previously mentioned. As the airspeed increases beyond the speed that gives minimum rate of descent, the rate of descent increases again. Even at zero airspeed, the rotor is quite effective, as it has nearly the drag coefficient of a parachuteJohnson, Wayne
Helicopter theory
p109, ''Courier Dover Publications'', 1980. Accessed: 25 February 2012.
despite consisting of blades. When landing from an autorotation, the kinetic energy stored in the rotating blades and the forward movement of the aircraft are used to decrease the rate of descent and make a soft landing. A greater amount of rotor energy is required to stop a helicopter with a high rate of descent than is required to stop a helicopter that is descending more slowly. Therefore, autorotative descents at very low or very high airspeeds are more critical than those performed at the minimum rate of descent airspeed. An optimum landing manoeuvre stops all of vertical movement, horizontal movement and rotational movement within the craft to a perfect standstill. In practice a perfect landing is rarely achievable. Each type of helicopter has a specific airspeed at which a power-off glide is most efficient. The best airspeed is the one that combines the greatest glide range with the slowest rate of descent. The specific airspeed is different for each type of helicopter, yet certain factors (density altitude, wind) affect all configurations in the same manner. The specific airspeed for autorotations is established for each type of helicopter on the basis of average weather and wind conditions and normal loading. A helicopter operated with heavy loads in high density altitude or gusty wind conditions can achieve best performance from a slightly increased airspeed in the descent. At low density altitude and light loading, best performance is achieved from a slight decrease in normal airspeed. Following this general procedure of fitting airspeed to existing conditions, the pilot can achieve approximately the same glide angle in any set of circumstances and estimate the touchdown point. This optimum
glide angle Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a ...
is usually 17–20 degrees.


Autorotational regions

During vertical autorotation, the rotor disc is divided into three regions—the driven region, the driving region, and the stall region. The sizes of these regions vary with the blade pitch, rate of descent, and rotor rotational speed. When changing autorotative rotational speed, blade pitch, or rate of descent, the sizes of the regions change in relation to each other. The driven region, also called the propeller region, is the region at the end of the blades. Normally, it consists of about 30 percent of the radius. It is the driven region that produces the most drag. The overall result is a deceleration in the rotation of the blade. The driving region, or autorotative region, normally lies between 25 and 70 percent of the blade radius, which produces the forces needed to turn the blades during autorotation. Total aerodynamic force in the driving region is inclined slightly forward of the axis of rotation, producing a continual acceleration force. This inclination supplies thrust, which tends to accelerate the rotation of the blade. Driving region size varies with blade pitch setting, rate of descent, and rotor rotational speed. The inner 25 percent of the rotor blade is referred to as the stall region and operates above its maximum angle of attack (stall angle) causing drag, which slows rotation of the blade. A constant rotor rotational speed is achieved by adjusting the collective pitch so blade acceleration forces from the driving region are balanced with the deceleration forces from the driven and stall regions. By controlling the size of the driving region, the pilot can adjust autorotative rotational speed. For example, if the collective pitch is raised, the pitch angle increases in all regions. This causes the point of equilibrium to move inboard along the blade's span, thereby increasing the size of the driven region. The stall region also becomes larger while the driving region becomes smaller. Reducing the size of the driving region causes the acceleration force of the driving region and rotational speed to decrease.


Broken Wing Award

The Broken Wing Award is a
United States Army The United States Army (USA) is the land service branch of the United States Armed Forces. It is one of the eight U.S. uniformed services, and is designated as the Army of the United States in the U.S. Constitution.Article II, section 2, ...
award for successful execution of an autorotation under emergency conditions. The requirements for the award, as stated in Army Regulation 672-74, are, "An aircrew member must, through outstanding airmanship, minimize or prevent aircraft damage or injury to personnel during an emergency situation. The aircrew member must have shown extraordinary skill while recovering an aircraft from an in-flight emergency situation."


See also

* Helicopter flight controls * Helicopter height–velocity diagram


References


External links

* Popular explanation o
autorotation
written by Paul Cantrell.
Pilot's 'exceptional flying' saves $540,000 helicopter
' – ''
The New Zealand Herald ''The New Zealand Herald'' is a daily newspaper published in Auckland, New Zealand, owned by New Zealand Media and Entertainment, and considered a newspaper of record for New Zealand. It has the largest newspaper circulation of all newspape ...
'', Monday 18 February 2008 {{aircontent Helicopter aerodynamics Types of landing