Attenuation Coefficient Iron
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, attenuation (in some contexts, extinction) is the gradual loss of
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ...
intensity through a
medium Medium may refer to: Science and technology Aviation * Medium bomber, a class of war plane * Tecma Medium, a French hang glider design Communication * Media (communication), tools used to store and deliver information or data * Medium ...
. For instance, dark
glasses Glasses, also known as eyeglasses or spectacles, are vision eyewear, with lenses (clear or tinted) mounted in a frame that holds them in front of a person's eyes, typically utilizing a bridge over the nose and hinged arms (known as temples ...
attenuate
sunlight Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere, and is obvious as daylight when ...
,
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
attenuates
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s, and
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
and
air The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing f ...
attenuate both
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
and
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
at variable attenuation rates. Hearing protectors help reduce acoustic flux from flowing into the ears. This phenomenon is called
acoustic attenuation Acoustic attenuation is a measure of the energy loss of sound propagation in media. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity ...
and is measured in
decibel The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a ...
s (dBs). In
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
and
telecommunication Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that ...
s, attenuation affects the propagation of waves and signals in
electrical circuit An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage source ...
s, in
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
s, and in air. Electrical attenuators and optical attenuators are commonly manufactured components in this field.


Background

In many cases, attenuation is an
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
of the path length through the medium. In optics and in chemical
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter ...
, this is known as the
Beer–Lambert law The Beer–Lambert law, also known as Beer's law, the Lambert–Beer law, or the Beer–Lambert–Bouguer law relates the attenuation of light to the properties of the material through which the light is travelling. The law is commonly applied t ...
. In engineering, attenuation is usually measured in units of
decibel The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a ...
s per unit length of medium (dB/cm, dB/km, etc.) and is represented by the attenuation
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves ...
of the medium in question.Essentials of Ultrasound Physics, James A. Zagzebski, Mosby Inc., 1996. Attenuation also occurs in
earthquake An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
s; when the
seismic waves A seismic wave is a wave of acoustic energy that travels through the Earth. It can result from an earthquake, volcanic eruption, magma movement, a large landslide, and a large man-made explosion that produces low-frequency acoustic energy. ...
move farther away from the
hypocenter In seismology, a hypocenter or hypocentre () is the point of origin of an earthquake or a subsurface nuclear explosion. A synonym is the focus of an earthquake. Earthquakes An earthquake's hypocenter is the position where the strain ener ...
, they grow smaller as they are attenuated by the
ground Ground may refer to: Geology * Land, the surface of the Earth not covered by water * Soil, a mixture of clay, sand and organic matter present on the surface of the Earth Electricity * Ground (electricity), the reference point in an electrical c ...
.


Ultrasound

One area of research in which attenuation plays a prominent role, is in
ultrasound Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies ...
physics. Attenuation in ultrasound is the reduction in amplitude of the ultrasound beam as a function of distance through the imaging medium. Accounting for attenuation effects in ultrasound is important because a reduced signal amplitude can affect the quality of the image produced. By knowing the attenuation that an ultrasound beam experiences traveling through a medium, one can adjust the input signal amplitude to compensate for any loss of energy at the desired imaging depth.Diagnostic Ultrasound, Stewart C. Bushong and Benjamin R. Archer, Mosby Inc., 1991. *''Ultrasound attenuation'' measurement in
heterogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
systems, like
emulsion An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Alth ...
s or
colloid A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
s, yields information on
particle size distribution The particle-size distribution (PSD) of a powder, or granular material, or particles dispersed in fluid, is a list of values or a mathematical function that defines the relative amount, typically by mass, of particles present according to size. Sig ...
. There is an ISO standard on this technique. *''Ultrasound attenuation'' can be used for extensional rheology measurement. There are acoustic rheometers that employ Stokes' law of sound attenuation, Stokes' law for measuring extensional viscosity and volume viscosity. Wave equations which take
acoustic attenuation Acoustic attenuation is a measure of the energy loss of sound propagation in media. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity ...
into account can be written on a fractional derivative form.S. P. Näsholm and S. Holm, "On a Fractional Zener Elastic Wave Equation," Fract. Calc. Appl. Anal. Vol. 16, No 1 (2013), pp. 26–50,
Link to e-print
/ref> In homogeneous media, the main physical properties contributing to sound attenuation are viscosity and thermal conductivity.G. Kirchhoff, "Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung", Ann. Phys. , 210: 177-193 (1868)
Link to paper
/ref>S. Benjelloun and J. M. Ghidaglia, "On the dispersion relation for compressible Navier-Stokes Equations,
Link to Archiv e-printLink to Hal e-print
/ref>


Attenuation coefficient

Attenuation coefficients are used to quantify different media according to how strongly the transmitted ultrasound amplitude decreases as a function of frequency. The attenuation
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves ...
(\alpha) can be used to determine total attenuation in decibel, dB in the medium using the following formula: : \text = \alpha \left[\frac\right] \cdot \ell [\text] \cdot \text[\text] Attenuation is linearly dependent on the medium length and attenuation coefficient, as well as – approximately – the frequency of the incident ultrasound beam for biological tissue (while for simpler media, such as air, the relationship is Stokes's law of sound attenuation, quadratic). Attenuation coefficients vary widely for different media. In biomedical ultrasound imaging however, biological materials and water are the most commonly used media. The attenuation coefficients of common biological materials at a frequency of 1 MHz are listed below: There are two general ways of acoustic energy losses: absorption (acoustics), absorption and scattering. Ultrasound propagation through Homogeneous (chemistry), homogeneous media is associated only with absorption and can be characterized with absorption coefficient only. Propagation through
heterogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
media requires taking into account scattering.


Light attenuation in water

Shortwave radiation emitted from the Sun have wavelengths in the visible spectrum of light that range from 360 nm (violet) to 750 nm (red). When the Sun's radiation reaches the sea surface, the shortwave radiation is attenuated by the water, and the intensity of light decreases exponentially with water depth. The intensity of light at depth can be calculated using the Beer-Lambert Law. In clear mid-ocean waters, visible light is absorbed most strongly at the longest wavelengths. Thus, red, orange, and yellow wavelengths are totally absorbed at shallower depths, while blue and violet wavelengths reach deeper in the water column. Because the blue and violet wavelengths are absorbed least compared to the other wavelengths, open-ocean waters appear ocean color, deep blue to the eye. Near the shore, coastal water contains more phytoplankton than the very clear mid-ocean waters. Chlorophyll-a pigments in the phytoplankton absorb light, and the plants themselves scatter light, making coastal waters less clear than mid-ocean waters. Chlorophyll-a absorbs light most strongly in the shortest wavelengths (blue and violet) of the visible spectrum. In coastal waters where high concentrations of phytoplankton occur, the green wavelength reaches the deepest in the water column and the color of water appears blue-green or Spring green#Sea green, green.


Seismic

The energy with which an
earthquake An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
affects a location depends on the running distance. The attenuation in the signal of ground motion intensity plays an important role in the assessment of possible strong groundshaking. A seismic wave loses energy as it propagates through the earth (seismic attenuation). This phenomenon is tied into the Dispersive mass transfer, dispersion of the seismic energy with the distance. There are two types of Dissipation, dissipated energy: * geometric dispersion caused by distribution of the seismic energy to greater volumes * dispersion as heat, also called intrinsic attenuation or anelastic attenuation. In Porosity#Porosity of rocks, porous fluid—saturated sedimentary rocks such as sandstones, intrinsic attenuation of seismic waves is primarily caused by the wave-induced flow of the pore fluid relative to the solid frame.


Electromagnetic

Attenuation decreases the intensity of electromagnetic radiation due to absorption (electromagnetic radiation), absorption or scattering of photons. Attenuation does not include the decrease in intensity due to inverse-square law geometric spreading. Therefore, calculation of the total change in intensity involves both the inverse-square law and an estimation of attenuation over the path. The primary causes of attenuation in matter are the photoelectric effect, compton scattering, and, for photon energies of above 1.022 MeV, pair production.


Coaxial and general RF cables

The attenuation of RF cables is defined by: : \text = 10\times\log_\left(\frac\right), where P_1 is the input power into a 100 m long cable terminated with the nominal value of its characteristic impedance, and P_2 is the output power at the far end of this cable. Attenuation in a coaxial cable is a function of the materials and the construction.


Radiography

The beam of X-ray is attenuated when photons are absorbed when the x-ray beam passes through the tissue. Interaction with matter varies between high energy photons and low energy photons. Photons travelling at higher energy are more capable of travelling through a tissue specimen as they have less chances of interacting with matter. This is mainly due to the photoelectric effect which states that "the probability of photoelectric absorption is approximately proportional to (Z/E)3, where Z is the atomic number of the tissue atom and E is the photon energy. In context of this, an increase in photon energy (E) will result in a rapid decrease in the interaction with matter.


Optics

Attenuation in fiber optics, also known as transmission loss, is the reduction in intensity of the light beam (or signal) with respect to distance travelled through a transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the relatively high quality of transparency of modern optical transmission . The medium is typically a fiber of silica glass that confines the incident light beam to the inside. Attenuation is an important factor limiting the transmission of a digital signal across large distances. Thus, much research has gone into both limiting the attenuation and maximizing the amplification of the optical signal. Empirical research has shown that attenuation in optical fiber is caused primarily by both scattering and absorption. Attenuation in fiber optics can be quantified using the following equation: : \text = 10\times\log_\left(\frac\right)


Light scattering

The propagation of light through the core of an optical fiber is based on total internal reflection of the lightwave. Rough and irregular surfaces, even at the molecular level of the glass, can cause light rays to be reflected in many random directions. This type of reflection is referred to as "diffuse reflection", and it is typically characterized by wide variety of reflection angles. Most objects that can be seen with the naked eye are visible due to diffuse reflection. Another term commonly used for this type of reflection is "light scattering". Light scattering from the surfaces of objects is our primary mechanism of physical observation. Light scattering from many common surfaces can be modelled by reflectance. Light scattering depends on the wavelength of the light being scattered. Thus, limits to spatial scales of visibility arise, depending on the frequency of the incident lightwave and the physical dimension (or spatial scale) of the scattering center, which is typically in the form of some specific microstructural feature. For example, since visible light has a wavelength scale on the order of one micrometer, scattering centers will have dimensions on a similar spatial scale. Thus, attenuation results from the incoherent scattering of light at internal surfaces and interfaces. In (poly)crystalline materials such as metals and ceramics, in addition to pores, most of the internal surfaces or interfaces are in the form of grain boundaries that separate tiny regions of crystalline order. It has recently been shown that, when the size of the scattering center (or grain boundary) is reduced below the size of the wavelength of the light being scattered, the scattering no longer occurs to any significant extent. This phenomenon has given rise to the production of transparent ceramic materials. Likewise, the scattering of light in optical quality glass fiber is caused by molecular-level irregularities (compositional fluctuations) in the glass structure. Indeed, one emerging school of thought is that a glass is simply the limiting case of a polycrystalline solid. Within this framework, "domains" exhibiting various degrees of short-range order become the building-blocks of both metals and alloys, as well as glasses and ceramics. Distributed both between and within these domains are microstructural defects that will provide the most ideal locations for the occurrence of light scattering. This same phenomenon is seen as one of the limiting factors in the transparency of IR missile domes.Archibald, P.S. and Bennett, H.E., "Scattering from infrared missile domes", Opt. Engr., Vol. 17, p.647 (1978)


UV-Vis-IR absorption

In addition to light scattering, attenuation or signal loss can also occur due to selective absorption of specific wavelengths, in a manner similar to that responsible for the appearance of color. Primary material considerations include both electrons and molecules as follows: * At the electronic level, it depends on whether the electron orbitals are spaced (or "quantized") such that they can absorb a quantum of light (or photon) of a specific wavelength or frequency in the ultraviolet (UV) or visible ranges. This is what gives rise to color. * At the atomic or molecular level, it depends on the frequencies of atomic or molecular vibrations or chemical bonds, how close-packed its atoms or molecules are, and whether or not the atoms or molecules exhibit long-range order. These factors will determine the capacity of the material transmitting longer wavelengths in the infrared (IR), far IR, radio and microwave ranges. The selective absorption of infrared (IR) light by a particular material occurs because the selected frequency of the light wave matches the frequency (or an integral multiple of the frequency) at which the particles of that material vibrate. Since different atoms and molecules have different natural frequencies of vibration, they will selectively absorb different frequencies (or portions of the spectrum) of infrared (IR) light.


Applications

In
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
s, attenuation is the rate at which the signal light decreases in intensity. For this reason, glass fiber (which has a low attenuation) is used for long-distance fiber optic cables; plastic fiber has a higher attenuation and, hence, shorter range. There also exist optical attenuators that decrease the signal in a fiber optic cable intentionally. Attenuation of light is also important in physical oceanography. This same effect is an important consideration in weather radar#Attenuation, weather radar, as raindrops absorb a part of the emitted beam that is more or less significant, depending on the wavelength used. Due to the damaging effects of high-energy photons, it is necessary to know how much energy is deposited in tissue during diagnostic treatments involving such radiation. In addition, gamma radiation is used in cancer treatments where it is important to know how much energy will be deposited in healthy and in tumorous tissue. In computer graphics attenuation defines the local or global influence of light sources and force fields. In CT scan, CT imaging, attenuation describes the density or darkness of the image.


Radio

Attenuation is an important consideration in the modern world of wireless
telecommunication Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that ...
. Attenuation limits the range of radio signals and is affected by the materials a signal must travel through (e.g., air, wood, concrete, rain). See the article on path loss for more information on signal loss in wireless communication.


See also

*Acoustic attenuation *Air mass (astronomy) *Astronomical filter *Astronomical seeing *Atmospheric refraction *Attenuation length *Attenuator (genetics) *Cross section (physics) *Electrical impedance *Environmental remediation for ''natural attenuation'' *Extinction (astronomy) *ITU-R P.525 *Mean free path *Path loss *Radar horizon *Radiation length *Radiography *Rain fade *Sunset#Colors *Twinkling *Wave propagation


References


External links


NIST's XAAMDI: X-Ray Attenuation and Absorption for Materials of Dosimetric Interest Database
{{Authority control Telecommunications engineering Acoustics