Anechoic Chamber
   HOME

TheInfoList



OR:

An anechoic chamber (''an-echoic'' meaning "non-reflective") is a room designed to stop reflections of either
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' b ...
or electromagnetic waves. They are also often isolated from energy entering from their surroundings. This combination means that a person or detector exclusively hears direct sounds (no reflected sounds), in effect simulating being outside in a free field. Anechoic chambers, a term coined by American acoustics expert
Leo Beranek Leo Leroy Beranek (September 15, 1914 – October 10, 2016) was an American acoustics expert, former MIT professor, and a founder and former president of Bolt, Beranek and Newman (now BBN Technologies). He authored ''Acoustics'', considered a cl ...
, were initially exclusively used to refer to acoustic anechoic chambers. Recently, the term has been extended to other RF and Sonar anechoic chambers, which eliminate reflection and external noise caused by electromagnetic waves. Anechoic chambers range from small compartments the size of household
microwave oven A microwave oven (commonly referred to as a microwave) is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces polar molecules in the food to rotate and produce ...
s to ones as large as
aircraft hangar A hangar is a building or structure designed to hold aircraft or spacecraft. Hangars are built of metal, wood, or concrete. The word ''hangar'' comes from Middle French ''hanghart'' ("enclosure near a house"), of Germanic origin, from Frankish ...
s. The size of the chamber depends on the size of the objects and frequency ranges being tested.


Acoustic anechoic chambers

The requirement for what was subsequently called an anechoic chamber originated to allow testing of loudspeakers that generated such intense sound levels that they could not be tested outdoors in inhabited areas. Anechoic chambers are commonly used in acoustics to conduct experiments in nominally "
free field In physics a free field is a field without interactions, which is described by the terms of motion and mass. Description In classical physics, a free field is a field whose equations of motion are given by linear partial differential equat ...
" conditions, free field meaning that there are no reflected signals. All sound energy will be traveling away from the source with almost none reflected back. Common anechoic chamber experiments include measuring the
transfer function In engineering, a transfer function (also known as system function or network function) of a system, sub-system, or component is a mathematical function that theoretically models the system's output for each possible input. They are widely used ...
of a
loudspeaker A loudspeaker (commonly referred to as a speaker or speaker driver) is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound. A ''speaker system'', also often simply referred to as a "speaker" or ...
or the directivity of noise radiation from industrial machinery. In general, the interior of an anechoic chamber can be very quiet, with typical noise levels in the 10–20 dBA range. In 2005, the best anechoic chamber measured at −9.4 dBA. In 2015, an anechoic chamber on the campus of
Microsoft Microsoft Corporation is an American multinational technology corporation producing computer software, consumer electronics, personal computers, and related services headquartered at the Microsoft Redmond campus located in Redmond, Washin ...
broke the world record with a measurement of −20.6 dBA. The human ear can typically detect sounds above 0 dBA, so a human in such a chamber would perceive the surroundings as devoid of sound. Anecdotally, some people may not like such silence and can become disoriented. The mechanism by which anechoic chambers minimize the reflection of sound waves impinging onto their walls is as follows: In the included figure, an incident sound wave I is about to impinge onto a wall of an anechoic chamber. This wall is composed of a series of wedges W with height H. After the impingement, the incident wave I is reflected as a series of waves R which in turn "bounce up-and-down" in the gap of air A (bounded by dotted lines) between the wedges W. Such bouncing may produce (at least temporarily) a standing wave pattern in A. During this process, the acoustic energy of the waves R gets dissipated via the air's molecular viscosity, in particular near the corner C. In addition, with the use of foam materials to fabricate the wedges, another dissipation mechanism happens during the wave/wall interactions. As a result, the component of the reflected waves R along the direction of I that escapes the gaps A (and goes back to the source of sound), denoted R', is notably reduced. Even though this explanation is two-dimensional, it is representative and applicable to the actual three-dimensional wedge structures used in anechoic chambers.


Semi-anechoic and hemi-anechoic chambers

Full anechoic chambers aim to absorb energy in all directions. To do this, all surfaces, including the floor, need to be covered in correctly shaped wedges. A mesh grille is usually installed above the floor to provide a surface to walk on and place equipment. This mesh floor is typically placed at the same floor level as the rest of the building, meaning the chamber itself extends ''below'' floor level. This mesh floor is damped and floating on absorbent buffers to isolate it from outside vibration or electromagnetic signals. In contrast, semi-anechoic or hemi-anechoic chambers have a solid floor that acts as a work surface for supporting heavy items, such as cars, washing machines, or industrial machinery, which could not be supported by the mesh grille in a full anechoic chamber. Recording studios are often semi-anechoic. The distinction between "semi-anechoic" and "hemi-anechoic" is unclear. In some uses they are synonyms, or only one term is used. Other uses distinguish one as having an ideally reflective floor (creating free-field conditions with a single reflective surface) and the other as simply having a flat untreated floor. Still other uses distinguish them by size and performance, with one being likely an existing room retrofitted with acoustic treatment, and the other a purpose-built room which is likely larger and has better anechoic performance.


Radio-frequency anechoic chambers

The internal appearance of the
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the ...
(RF) anechoic chamber is sometimes similar to that of an acoustic anechoic chamber; however, the interior surfaces of the RF anechoic chamber are covered with radiation absorbent material (RAM) instead of acoustically absorbent material. Uses for RF anechoic chambers include testing antennas, radars, and is typically used to house the antennas for performing measurements of antenna
radiation pattern In the field of antenna design the term radiation pattern (or antenna pattern or far-field pattern) refers to the ''directional'' (angular) dependence of the strength of the radio waves from the antenna or other source.Constantine A. Balanis: “A ...
s, electromagnetic interference. Performance expectations (gain, efficiency, pattern characteristics, etc.) constitute primary challenges in designing stand alone or embedded
antennas In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an ...
. Designs are becoming ever more complex with a single device incorporating multiple technologies such as
cellular Cellular may refer to: *Cellular automaton, a model in discrete mathematics * Cell biology, the evaluation of cells work and more * ''Cellular'' (film), a 2004 movie *Cellular frequencies, assigned to networks operating in cellular RF bands *Cell ...
,
WiFi Wi-Fi () is a family of wireless network protocols, based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio wa ...
,
Bluetooth Bluetooth is a short-range wireless technology standard that is used for exchanging data between fixed and mobile devices over short distances and building personal area networks (PANs). In the most widely used mode, transmission power is limi ...
, LTE,
MIMO In radio, multiple-input and multiple-output, or MIMO (), is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wi ...
, RFID and
GPS The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sy ...
.


Radiation-absorbent material

RAM is designed and shaped to absorb incident RF radiation (also known as
non-ionising radiation Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum (photon energy) to ionize atoms or molecules—that is, to completely remove an electron from an atom or molec ...
) as effectively as possible, from as many incident directions as possible. The more effective the RAM, the lower the resulting level of reflected RF radiation. Many measurements in electromagnetic compatibility (EMC) and antenna radiation patterns require that spurious signals arising from the test setup, including reflections, are negligible to avoid the risk of causing measurement errors and ambiguities.


Effectiveness over frequency

Waves of higher frequencies have shorter wavelengths and are higher in energy, while waves of lower frequencies have longer wavelengths and are lower in energy, according to the relationship \lambda= v/f where lambda represents wavelength, v is phase velocity of wave, and f is frequency. To shield for a specific wavelength, the cone must be of appropriate size to absorb that wavelength. The performance quality of an RF anechoic chamber is determined by its lowest test frequency of operation, at which measured reflections from the internal surfaces will be the most significant compared to higher frequencies. Pyramidal RAM is at its most absorptive when the incident wave is at
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
incidence to the internal chamber surface and the pyramid height is approximately equal to \lambda/4, where \lambda is the
free space A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
. Accordingly, increasing the pyramid height of the RAM for the same (
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
) base size improves the effectiveness of the chamber at low frequencies but results in increased cost and a reduced unobstructed working volume that is available inside a chamber of defined size.


Installation into a screened room

An RF anechoic chamber is usually built into a screened room, designed using the Faraday cage principle. This is because most of the RF tests that require an anechoic chamber to minimize reflections from the inner surfaces also require the properties of a screened room to
attenuate In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at vari ...
unwanted signals penetrating inwards and causing interference to the equipment under test and prevent leakage from tests penetrating outside.


Chamber size and commissioning

At lower radiated frequencies, far-field measurement can require a large and expensive chamber. Sometimes, for example for radar cross-section measurements, it is possible to scale down the object under test and reduce the chamber size, provided that the wavelength of the test frequency is scaled down in direct proportion by testing at a higher frequency. RF anechoic chambers are normally designed to meet the electrical requirements of one or more accredited
standard Standard may refer to: Symbols * Colours, standards and guidons, kinds of military signs * Standard (emblem), a type of a large symbol or emblem used for identification Norms, conventions or requirements * Standard (metrology), an object th ...
s. For example, the aircraft industry may test equipment for aircraft according to company specifications or military specifications such as
MIL-STD 461 MIL-STD-461 is a United States Military Standard A United States defense standard, often called a military standard, "MIL-STD", "MIL-SPEC", or (informally) "MilSpecs", is used to help achieve standardization objectives by the U.S. Department of ...
E. Once built,
acceptance test In engineering and its various subdisciplines, acceptance testing is a test conducted to determine if the requirements of a specification or contract are met. It may involve chemical tests, physical tests, or performance tests. In systems eng ...
s are performed during commissioning to verify that the standard(s) are in fact met. Provided they are, a certificate will be issued to that effect. The chamber will need to be periodically retested.


Operational use

Test and supporting equipment configurations to be used within anechoic chambers must expose as few metallic (conductive) surfaces as possible, as these risk causing unwanted reflections. Often this is achieved by using non-conductive
plastic Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptab ...
or
wood Wood is a porous and fibrous structural tissue found in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulose fibers that are strong in tension and embedded in a matrix of lignin ...
en structures for supporting the equipment under test. Where metallic surfaces are unavoidable, they may be covered with pieces of RAM after setting up to minimize such reflection as far as possible. A careful assessment may be required as to whether the test equipment (as opposed to the equipment under test) should be placed inside or outside the chamber. Typically most of it is located in a separate screened room attached to the main test chamber, in order to shield it from both external interference and from the radiation within the chamber. Mains power and test signal cabling into the test chamber require high quality filtering.
Fiber optic An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means t ...
cables are sometimes used for the signal cabling, as they are immune to ordinary RFI and also cause little reflection inside the chamber.


Health and safety risks associated with RF anechoic chamber

The following
health and safety Occupational safety and health (OSH), also commonly referred to as occupational health and safety (OHS), occupational health, or occupational safety, is a multidisciplinary field concerned with the safety, health, and welfare of people at wo ...
risks are associated with RF anechoic chambers: *RF radiation hazard *Fire hazard *Trapped personnel Personnel are not normally permitted inside the chamber during a measurement as this not only can cause unwanted reflections from the human body but may also be a radiation hazard to the personnel concerned if tests are being performed at high RF powers. Such risks are from RF or non-ionizing radiation and not from the higher energy ionizing radiation. As RAM is highly absorptive of RF radiation, incident radiation will generate
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
within the RAM. If this cannot be dissipated adequately there is a risk that hot spots may develop and the RAM
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
may rise to the point of
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
. This can be a risk if a transmitting antenna inadvertently gets too close to the RAM. Even for quite modest transmitting power levels, high
gain Gain or GAIN may refer to: Science and technology * Gain (electronics), an electronics and signal processing term * Antenna gain * Gain (laser), the amplification involved in laser emission * Gain (projection screens) * Information gain in de ...
antennas can concentrate the power sufficiently to cause high power flux near their
aperture In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane. An ...
s. Although recently manufactured RAM is normally treated with a
fire retardant A fire retardant is a substance that is used to slow down or stop the spread of fire or reduce its intensity. This is commonly accomplished by chemical reactions that reduce the flammability of fuels or delay their combustion. Fire retardants m ...
to reduce such risks, they are difficult to eliminate. Safety regulations normally require the installation of a
gaseous fire suppression Gaseous fire suppression, also called clean agent fire suppression, is a term to describe the use of inert gases and chemical agents to extinguish a fire. These agents are governed by the National Fire Protection Association (NFPA) Standard for C ...
system including
smoke detector A smoke detector is a device that senses smoke, typically as an indicator of fire. Smoke detectors are usually housed in plastic enclosures, typically shaped like a disk about in diameter and thick, but shape and size vary. Smoke can be detecte ...
s.


See also

*
Soundproofing Soundproofing is any means of impeding sound propagation. There are several basic approaches to reducing sound: increasing the distance between source and receiver, decoupling, using noise barriers to reflect or absorb the energy of the sound ...
*
Vibration isolation Vibration isolation is the process of isolating an object, such as a piece of equipment, from the source of vibrations. Vibration is undesirable in many domains, primarily engineered systems and habitable spaces, and methods have been developed to p ...
*
Buffer (disambiguation) Buffer may refer to: Science * Buffer gas, an inert or nonflammable gas * Buffer solution, a solution used to prevent changes in pH * Buffering agent, the weak acid or base in a buffer solution * Lysis buffer, in cell biology * Metal ion buffer ...
*
Damped wave Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples i ...
* Damping ratio *
Damper (disambiguation) A damper is a device that deadens, restrains, or depresses. It may refer to: Music * Damper pedal, a device that mutes musical tones, particularly in stringed instruments * A mute for various brass instruments Structure * Damper (flow), a mecha ...
*
Electromagnetic reverberation chamber An electromagnetic reverberation chamber (also known as a reverb chamber (RVC) or mode-stirred chamber (MSC)) is an environment for electromagnetic compatibility (EMC) testing and other electromagnetic investigations. Electromagnetic reverberatio ...
*
Reverberation room A reverberation chamber or room is a room designed to create a diffuse or random incidence sound field (i.e. one with a uniform distribution of acoustic energy and random direction of sound incidence over a short time period). Reverberation cham ...
* Sensory deprivation *
GTEM cell A TEM or transverse electromagnetic cell is a type of test chamber used to perform electromagnetic compatibility (EMC) or electromagnetic interference (EMI) testing. It allows for the creation of Near and far field, far field electromagnetic fields ...


References


External links


360-degree video of an anechoic chamber

Pictures and description of an acoustic anechoic chamber

Anechoic Chambers, Past and Present

How RF Anechoic Chambers Work

Video tour of an EMC/RF Test facility. Including the largest anechoic test chamber in the southern hemisphere
* Some examples *

*
Millimeter Wave Inc's Radio/MM Wave anechoic chamber
*

*
Anechoic chamber for millimeter wave designs
** *

** ttps://web.archive.org/web/20071107061848/http://acs.feld.cvut.cz/old/komora.html Photos from building an anechoic chamber in CTU, Prague*Sound examples *
The sound of clothes inside an anechoic chamber
*
Hallucinations in anechoic chambers: the science behind the claim
*
Listen to a subdued balloon burst in an anechoic chamber
{{DEFAULTSORT:Anechoic Chamber Laboratories Electromagnetic radiation Silence Radiation Rooms Noise control Acoustics