HOME

TheInfoList



OR:

Alpha-keratin, or α-keratin, is a type of
keratin Keratin () is one of a family of structural fibrous proteins also known as ''scleroproteins''. Alpha-keratin (α-keratin) is a type of keratin found in vertebrates. It is the key structural material making up Scale (anatomy), scales, hair, Nail ...
found in
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, with ...
s. This
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
is the primary component in
hair Hair is a protein filament that grows from follicles found in the dermis. Hair is one of the defining characteristics of mammals. The human body, apart from areas of glabrous skin, is covered in follicles which produce thick terminal and fi ...
s, horns, mammalian
claw A claw is a curved, pointed appendage found at the end of a toe or finger in most amniotes (mammals, reptiles, birds). Some invertebrates such as beetles and spiders have somewhat similar fine, hooked structures at the end of the leg or tarsus ...
s, nails and the epidermis layer of the
skin Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation. Other animal coverings, such as the arthropod exoskeleton, have different ...
. α-keratin is a fibrous structural protein, meaning it is made up of
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
s that form a repeating secondary structure. The secondary structure of α-keratin is very similar to that of a traditional protein
α-helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ...
and forms a
coiled coil A coiled coil is a structural motif in proteins in which 2–7 alpha-helices are coiled together like the strands of a rope. (Dimers and trimers are the most common types.) Many coiled coil-type proteins are involved in important biological fu ...
. Due to its tightly wound structure, it can function as one of the strongest biological materials and has various functions in mammals, from predatory
claw A claw is a curved, pointed appendage found at the end of a toe or finger in most amniotes (mammals, reptiles, birds). Some invertebrates such as beetles and spiders have somewhat similar fine, hooked structures at the end of the leg or tarsus ...
s to hair for warmth. α-keratin is synthesized through
protein biosynthesis Protein biosynthesis (or protein synthesis) is a core biological process, occurring inside cells, balancing the loss of cellular proteins (via degradation or export) through the production of new proteins. Proteins perform a number of critical ...
, utilizing transcription and
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
, but as the cell matures and is full of α-keratin, it dies, creating a strong non-
vascular The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away f ...
unit of
keratin Keratin () is one of a family of structural fibrous proteins also known as ''scleroproteins''. Alpha-keratin (α-keratin) is a type of keratin found in vertebrates. It is the key structural material making up Scale (anatomy), scales, hair, Nail ...
ized tissue.


Structure

α-keratin is a
polypeptide chain Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
, typically high in
alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side ...
,
leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- ...
,
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the am ...
, and
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
, that forms a right-handed
α-helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ...
. Two of these polypeptide chains twist together to form a left-handed helical structure known as a
coiled coil A coiled coil is a structural motif in proteins in which 2–7 alpha-helices are coiled together like the strands of a rope. (Dimers and trimers are the most common types.) Many coiled coil-type proteins are involved in important biological fu ...
. These coiled coil dimers, approximately 45 nm long, are bonded together with disulfide bonds, utilizing the many
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
amino acids found in α-keratins. The dimers then align, their termini bonding with the termini of other dimers, and two of these new chains bond length-wise, all through disulfide bonds, to form a protofilament. Two protofilaments aggregate to form a protofibril, and four protofibrils polymerize to form the intermediate filament (IF). The IF is the basic subunit of α-keratins. These IFs are able to condense into a super-coil formation of about 7 nm in diameter, and can be type I, acidic, or type II, basic. The IFs are finally embedded in a keratin
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
that either is high in
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
or
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
,
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the G ...
, and
phenylalanine Phenylalanine (symbol Phe or F) is an essential α-amino acid with the formula . It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amin ...
residues. The different types, alignments, and matrices of these IFs account for the large variation in α-keratin structures found in mammals.


Biochemistry


Synthesis

α-keratin synthesis begins near focal adhesions on the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
. There, the keratin filament precursors go through a process known as
nucleation In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that deter ...
, where the keratin precursors of dimers and filaments elongate, fuse, and bundle together. As this synthesis is occurring, the keratin filament precursors are transported by actin fibers in the cell towards the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
. There, the alpha-keratin intermediate filaments will collect and form networks of structure dictated by the use of the keratin cell as the nucleus simultaneously degrades. However, if necessary, instead of continuing to grow, the keratin complex will disassemble into non-filamentous keratin precursors that can
diffuse Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
throughout the cell
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
. These keratin filaments will be able to be used in future keratin synthesis, either to re-organize the final structure or create a different keratin complex. When the cell has been filled with the correct keratin and structured correctly, it undergoes keratin stabilization and dies, a form of
programmed cell death Programmed cell death (PCD; sometimes referred to as cellular suicide) is the death of a cell (biology), cell as a result of events inside of a cell, such as apoptosis or autophagy. PCD is carried out in a biological process, which usually confers ...
. This results in a fully matured, non-vascular keratin cell. These fully matured, or cornified, alpha-keratin cells are the main components of hair, the outer layer of nails and horns, and the epidermis layer of the skin.


Properties

The property of most biological importance of alpha-keratin is its structural stability. When exposed to mechanical stress, α-keratin structures can retain their shape and therefore can protect what they surround. Under high tension, alpha-keratin can even change into
beta-keratin Beta-keratin (β-keratin), is a member of a structural protein family found in the epidermis of reptiles and birds. Beta-keratins were named so because they are components of epidermal stratum corneum rich in stacked beta sheets, in contrast to a ...
, a stronger keratin formation that has a secondary structure of beta-pleated sheets. Alpha-keratin tissues also show signs of
viscoelasticity In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearl ...
, allowing them to both be able to stretch and absorb impact to a degree, though they are not impervious to
fracture Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displ ...
. Alpha-keratin strength is also affected by
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
content in the intermediate filament matrix; higher water content decreases the strength and stiffness of the keratin cell due to their effect on the various hydrogen bonds in the alpha-keratin network.


Characterization


Type I and type II

Alpha-keratins proteins can be one of two types: type I or type II. There are 54 keratin genes in humans, 28 of which code for type I, and 26 for type II. Type I proteins are acidic, meaning they contain more acidic amino acids, such as
aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
, while type II proteins are basic, meaning they contain more basic amino acids, such as
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated − ...
. This differentiation is especially important in alpha-keratins because in the synthesis of its sub-unit dimer, the
coiled coil A coiled coil is a structural motif in proteins in which 2–7 alpha-helices are coiled together like the strands of a rope. (Dimers and trimers are the most common types.) Many coiled coil-type proteins are involved in important biological fu ...
, one protein coil must be type I, while the other must be type II. Even within type I and II, there are acidic and basic keratins that are particularly complementary within each organism. For example, in human skin, K5, a type II alpha keratin, pairs primarily with K14, a type I alpha-keratin, to form the alpha-keratin complex of the epidermis layer of cells in the skin.


Hard and soft

Hard alpha-keratins, such as those found in nails, have a higher
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
content in their
primary structure Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynth ...
. This causes an increase in disulfide bonds that are able to stabilize the keratin structure, allowing it to resist a higher level of
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
before fracture. On the other hand, soft alpha-keratins, such as ones found in the skin, contain a comparatively smaller amount of disulfide bonds, making their structure more flexible.


References

{{Reflist Keratins