Alexandrov's uniqueness theorem
   HOME

TheInfoList



OR:

Alexandrov's theorem on polyhedra is a rigidity theorem in mathematics, describing three-dimensional
convex polyhedra In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surfa ...
in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician
Aleksandr Danilovich Aleksandrov Aleksandr Danilovich Aleksandrov (; 4 August 1912 – 27 July 1999) was a Soviet and Russian mathematician, physicist, philosopher and mountaineer. Personal life Aleksandr Aleksandrov was born in 1912 in Volyn, Ryazan Oblast. His father was ...
, who published it in the 1940s.


Statement of the theorem

The surface of any convex polyhedron in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
forms a
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
, in which the distance between two points is measured by the length of the
shortest path In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. The problem of finding the shortest path between two ...
from one point to the other along the surface. Within a single shortest path, distances between pairs of points equal the distances between corresponding points of a
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
of the same length; a path with this property is known as a
geodesic In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
. This property of polyhedral surfaces, that every pair of points is connected by a geodesic, is not true of many other metric spaces, and when it is true the space is called a geodesic space. The geodesic space formed from the surface of a polyhedron is called its ''development''. The polyhedron can be thought of as being folded from a sheet of paper (a net for the polyhedron) and it inherits the same geometry as the paper: for every point ''p'' within a face of the polyhedron, a sufficiently small
open neighborhood In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a po ...
of ''p'' will have the same distances as a subset of the
Euclidean plane In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
. The same thing is true even for points on the edges of the polyhedron: they can be modeled locally as a Euclidean plane folded along a line and embedded into three-dimensional space, but the fold does not change the structure of shortest paths along the surface. However, the vertices of the polyhedron have a different distance structure: the local geometry of a polyhedron vertex is the same as the local geometry at the apex of a
cone In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the '' apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines ...
. Any cone can be formed from a flat sheet of paper with a wedge removed from it by gluing together the cut edges where the wedge was removed. The angle of the wedge that was removed is called the
angular defect In geometry, the angular defect or simply defect (also called deficit or deficiency) is the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the ''exces ...
of the vertex; it is a positive number less than  2. The defect of a polyhedron vertex can be measured by subtracting the face angles at that vertex from 2. For instance, in a regular tetrahedron, each face angle is /3, and there are three of them at each vertex, so subtracting them from 2 leaves a defect of at each of the four vertices. Similarly, a cube has a defect of /2 at each of its eight vertices. Descartes' theorem on total angular defect (a form of the Gauss–Bonnet theorem) states that the sum of the angular defects of all the vertices is always exactly 4. In summary, the development of a convex polyhedron is geodesic,
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
(topologically equivalent) to a sphere, and locally Euclidean except for a finite number of cone points whose angular defect sums to 4. Alexandrov's theorem gives a converse to this description. It states that if a metric space is geodesic, homeomorphic to a sphere, and locally Euclidean except for a finite number of cone points of positive angular defect (necessarily summing to 4), then there exists a convex polyhedron whose development is the given space. Moreover, this polyhedron is uniquely defined from the metric: any two convex polyhedra with the same surface metric must be
congruent Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In modu ...
to each other as three-dimensional sets.


Limitations

The polyhedron representing the given metric space may be degenerate: it may form a doubly-covered two-dimensional convex polygon (a dihedron) rather than a fully three-dimensional polyhedron. In this case, its surface metric consists of two copies of the polygon (its two sides) glued together along corresponding edges. Although Alexandrov's theorem states that there is a unique convex polyhedron whose surface has a given metric, it may also be possible for there to exist non-convex polyhedra with the same metric. An example is given by the
regular icosahedron The regular icosahedron (or simply ''icosahedron'') is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with Regular polygon, regular faces to each of its pentagonal faces, or by putting ...
: if five of its triangles are removed, and are replaced by five congruent triangles forming an indentation into the polyhedron, the resulting surface metric stays unchanged. This example uses the same creases for the convex and non-convex polyhedron, but that is not always the case. For instance, the surface of a regular octahedron can be re-folded along different creases into a non-convex polyhedron with 24 equilateral triangle faces, the Kleetope obtained by gluing
square pyramid In geometry, a square pyramid is a Pyramid (geometry), pyramid with a square base and four triangles, having a total of five faces. If the Apex (geometry), apex of the pyramid is directly above the center of the square, it is a ''right square p ...
s onto the squares of a cube. Six triangles meet at each additional vertex introduced by this refolding, so they have zero angular defect and remain locally Euclidean. In the illustration of an octahedron folded from four hexagons, these 24 triangles are obtained by subdividing each hexagon into six triangles. The development of any polyhedron can be described concretely by a collection of two-dimensional polygons together with instructions for gluing them together along their edges to form a metric space, and the conditions of Alexandrov's theorem for spaces described in this way are easily checked. However, the edges where two polygons are glued together could become flat and lie in the interior of faces of the resulting polyhedron, rather than becoming polyhedron edges. (For an example of this phenomenon, see the illustration of four hexagons glued to form an octahedron.) Therefore, even when the development is described in this way, it may not be clear what shape the resulting polyhedron has, what shapes its faces have, or even how many faces it has. Alexandrov's original proof does not lead to an
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
for constructing the polyhedron (for instance by giving coordinates for its vertices) realizing the given metric space. In 2008, Bobenko and Izmestiev provided such an algorithm. Their algorithm can approximate the coordinates arbitrarily accurately, in pseudo-polynomial time.


Related results

One of the earliest existence and uniqueness theorems for convex polyhedra is Cauchy's theorem, which states that a convex polyhedron is uniquely determined by the shape and connectivity of its faces. Alexandrov's theorem strengthens this by showing that even if the faces are allowed to bend or fold, without stretching or shrinking, then their connectivity still determines the shape of the polyhedron. In turn, Alexandrov's proof of the existence part of his theorem uses a strengthening of Cauchy's theorem by
Max Dehn Max Wilhelm Dehn (November 13, 1878 – June 27, 1952) was a German mathematician most famous for his work in geometry, topology and geometric group theory. Dehn's early life and career took place in Germany. However, he was forced to retire in 1 ...
to infinitesimal rigidity. An analogous result to Alexandrov's holds for smooth convex surfaces: a two-dimensional
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
whose
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For ...
is everywhere positive and totals 4 can be represented uniquely as the surface of a smooth convex body in three dimensions. The uniqueness of this representation is a result of Stephan Cohn-Vossen from 1927, with some regularity conditions on the surface that were removed in subsequent research. Its existence was proven by Alexandrov, using an argument involving limits of polyhedral metrics. Aleksei Pogorelov generalized both these results, characterizing the developments of arbitrary convex bodies in three dimensions. Another result of Pogorelov on the geodesic metric spaces derived from convex polyhedra is a version of the
theorem of the three geodesics In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical ...
: every convex polyhedron has at least three simple closed quasigeodesics. These are curves that are locally straight lines except when they pass through a vertex, where they are required to have angles of less than on both sides of them. The developments of ideal hyperbolic polyhedra can be characterized in a similar way to Euclidean convex polyhedra: every two-dimensional manifold with uniform hyperbolic geometry and finite area, combinatorially equivalent to a finitely-punctured sphere, can be realized as the surface of an ideal polyhedron.


References

{{Mathematics of paper folding Geodesic (mathematics) Mathematics of rigidity Theorems about polyhedron Theorems in convex geometry Theorems in discrete geometry Uniqueness theorems