Axoplasmic
   HOME

TheInfoList



OR:

Axoplasm is the cytoplasm within the axon of a neuron (nerve cell). For some neuronal types this can be more than 99% of the total cytoplasm. Axoplasm has a different composition of
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
s and other materials than that found in the neuron's cell body (
soma Soma may refer to: Businesses and brands * SOMA (architects), a New York–based firm of architects * Soma (company), a company that designs eco-friendly water filtration systems * SOMA Fabrications, a builder of bicycle frames and other bicycle ...
) or dendrites. In axonal transport (also known as axoplasmic transport) materials are carried through the axoplasm to or from the soma. The electrical resistance of the axoplasm, called axoplasmic resistance, is one aspect of a neuron's cable properties, because it affects the rate of travel of an action potential down an axon. If the axoplasm contains many molecules that are not
electrically conductive Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
, it will slow the travel of the potential because it will cause more ions to flow across the axolemma (the axon's membrane) than through the axoplasm.


Structure

Axoplasm is composed of various organelles and cytoskeletal elements. The axoplasm contains a high concentration of elongated
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
, microfilaments, and microtubules. Axoplasm lacks much of the cellular machinery (
ribosomes Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to f ...
and
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
) required to transcribe and translate complex
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
. As a result, most enzymes and large proteins are transported from the soma through the axoplasm. Axonal transport occurs either by fast or slow transport. Fast transport involves vesicular contents (like organelles) being moved along microtubules by motor proteins at a rate of 50–400mm per day. Slow axoplasmic transport involves the movement of cytosolic soluble proteins and cytoskeletal elements at a much slower rate of 0.02-0.1mm/d. The precise mechanism of slow axonal transport remains unknown but recent studies have proposed that it may function by means of transient association with the fast axonal transport
vesicle Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
s. Though axonal transport is responsible for most organelles and complex proteins present in the axoplasm, recent studies have shown that some translation does occur in axoplasm. This axoplasmic translation is possible due to the presence of localized translationally silent mRNA and ribonuclear protein complexes.


Function


Signal transduction

Axoplasm is integral to the overall function of neurons in propagating action potential through the axon. The amount of axoplasm in the axon is important to the cable like properties of the axon in cable theory. In regards to cable theory, the axoplasmic content determines the resistance of the axon to a potential change. The composing cytoskeletal elements of axoplasm, neural filaments, and microtubules provide the framework for axonal transport which allows for neurotransmitters to reach the
synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
. Furthermore, axoplasm contains the pre-synaptic vesicles of neurotransmitter which are eventually released into the synaptic cleft.


Damage detection and regeneration

Axoplasm contains both the mRNA and ribonuclearprotein required for axonal protein synthesis. Axonal protein synthesis has been shown to be integral in both
neural regeneration Neuroregeneration refers to the regrowth or repair of nervous tissues, cell (biology), cells or cell products. Such mechanisms may include generation of new neurons, glia, axons, myelin, or synapses. Neuroregeneration differs between the periphera ...
and in localized responses to axon damage. When an axon is damaged, both axonal translation and retrograde axonal transport are required to propagate a signal to the soma that the cell is damaged.


History

Axoplasm was not a main focus for neurological research until many years of learning of the functions and properties of squid giant axons. Axons in general were very difficult to study due to their narrow structure and in close proximity to glial cells. To solve this problem squid axons were used as an animal model due to the relatively vast sized axons compared to humans or other mammals. These axons were mainly studied to understand action potential, and axoplasm was soon understood to be important in
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges ...
. The axoplasm was at first just thought to be very similar to cytoplasm, but axoplasm plays an important role in transference of nutrients and electrical potential that is generated by neurons. It actually proves quite difficult to isolate axons from the myelin that surrounds it, so the squid giant axon is the focus for many studies that touch on axoplasm. As more knowledge formed from studying the signalling that occurs in neurons, transfer of nutrients and materials became an important topic to research. The mechanisms for the proliferation and sustained electrical potentials were affected by the fast axonal transport system. The fast axonal transport system uses the axoplasm for movement, and contains many non-conductive molecules that change the rate of these electrical potentials across the axon, but the opposite influence does not occur. The fast axonal transport system is able to function without an axolemma, implying that the electrical potential does not influence the transport of materials through the axon. This understanding of the relationship of axoplasm regarding transport and electrical potential is critical in the understanding of the overall brain functions. With this knowledge, axoplasm has become a model for studying varying cell signaling and functions for the research of neurological diseases like
Alzheimer's Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As t ...
, and
Huntington's Huntington's disease (HD), also known as Huntington's chorea, is a neurodegenerative disease that is mostly inherited. The earliest symptoms are often subtle problems with mood or mental abilities. A general lack of coordination and an unst ...
. Fast axonal transport is a crucial mechanism when examining these diseases and determining how a lack of materials and nutrients can influence the progression of neurological disorders.


References

{{Authority control Neurohistology