HOME

TheInfoList



OR:

In mathematics, an autonomous system or autonomous differential equation is a system of
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contras ...
s which does not explicitly depend on the independent variable. When the variable is time, they are also called time-invariant systems. Many laws in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, where the independent variable is usually assumed to be
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, t ...
, are expressed as autonomous systems because it is assumed the laws of nature which hold now are identical to those for any point in the past or future.


Definition

An autonomous system is a system of ordinary differential equations of the form \fracx(t)=f(x(t)) where takes values in -dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
; is often interpreted as time. It is distinguished from systems of differential equations of the form \fracx(t)=g(x(t),t) in which the law governing the evolution of the system does not depend solely on the system's current state but also the parameter , again often interpreted as time; such systems are by definition not autonomous.


Properties

Solutions are invariant under horizontal translations: Let x_1(t) be a unique solution of the initial value problem for an autonomous system \fracx(t)=f(x(t)) \, , \quad x(0)=x_0. Then x_2(t)=x_1(t-t_0) solves \fracx(t)=f(x(t)) \, , \quad x(t_0)=x_0. Denoting s=t-t_0 gets x_1(s)=x_2(t) and ds=dt, thus \fracx_2(t) = \fracx_1(t-t_0)=\fracx_1(s) = f(x_1(s)) = f(x_2(t)) . For the initial condition, the verification is trivial, x_2(t_0)=x_1(t_0-t_0)=x_1(0)=x_0 .


Example

The equation y'= \left(2-y\right)y is autonomous, since the independent variable (x) does not explicitly appear in the equation. To plot the slope field and isocline for this equation, one can use the following code in GNU Octave/
MATLAB MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementa ...
Ffun = @(X, Y)(2 - Y) .* Y; % function f(x,y)=(2-y)y
, Y The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
= meshgrid(0:.2:6, -1:.2:3); % choose the plot sizes DY = Ffun(X, Y); DX = ones(size(DY)); % generate the plot values quiver(X, Y, DX, DY, 'k'); % plot the direction field in black hold on; contour(X, Y, DY, 1 2 'g'); % add the isoclines(0 1 2) in green title('Slope field and isoclines for f(x,y)=(2-y)y')
One can observe from the plot that the function \left(2-y\right)y is x-invariant, and so is the shape of the solution, i.e. y(x)=y(x-x_0) for any shift x_0. Solving the equation symbolically in
MATLAB MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementa ...
, by running syms y(x); equation = (diff(y)

(2 - y) * y); % solve the equation for a general solution symbolically y_general = dsolve(equation);
obtains two equilibrium solutions, y=0 and y=2, and a third solution involving an unknown constant C_3, -2 / (exp(C3 - 2 * x) - 1). Picking up some specific values for the initial condition, one can add the plot of several solutions % solve the initial value problem symbolically % for different initial conditions y1 = dsolve(equation, y(1)

1); y2 = dsolve(equation, y(2)

1); y3 = dsolve(equation, y(3)

1); y4 = dsolve(equation, y(1)

3); y5 = dsolve(equation, y(2)

3); y6 = dsolve(equation, y(3)

3); % plot the solutions ezplot(y1, 6; ezplot(y2, 6; ezplot(y3, 6; ezplot(y4, 6; ezplot(y5, 6; ezplot(y6, 6; title('Slope field, isoclines and solutions for f(x,y)=(2-y)y') legend('Slope field', 'Isoclines', 'Solutions y_'); text( 2 3 1 1 strcat('\leftarrow', )); text( 2 3 3 3 strcat('\leftarrow', )); grid on;


Qualitative analysis

Autonomous systems can be analyzed qualitatively using the phase space; in the one-variable case, this is the phase line.


Solution techniques

The following techniques apply to one-dimensional autonomous differential equations. Any one-dimensional equation of order n is equivalent to an n-dimensional first-order system (as described in reduction to a first-order system), but not necessarily vice versa.


First order

The first-order autonomous equation \frac = f(x) is separable, so it can be solved by rearranging it into the integral form t + C = \int \frac


Second order

The second-order autonomous equation \frac = f(x, x') is more difficult, but it can be solved by introducing the new variable v = \frac and expressing the second derivative of x via the
chain rule In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x) ...
as \frac = \frac = \frac\frac = v\frac so that the original equation becomes v\frac = f(x, v) which is a first order equation containing no reference to the independent variable t. Solving provides v as a function of x. Then, recalling the definition of v: \frac = v(x) \quad \Rightarrow \quad t + C = \int \frac which is an implicit solution.


Special case:

The special case where f is independent of x' \frac = f(x) benefits from separate treatment. These types of equations are very common in
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
because they are always Hamiltonian systems. The idea is to make use of the identity \frac = \left(\frac\right)^ which follows from the
chain rule In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x) ...
, barring any issues due to division by zero. By inverting both sides of a first order autonomous system, one can immediately integrate with respect to x: \frac = f(x) \quad \Rightarrow \quad \frac = \frac \quad \Rightarrow \quad t + C = \int \frac which is another way to view the separation of variables technique. The second derivative must be expressed as a derivative with respect to x instead of t: \begin \frac &= \frac\left(\frac\right) = \frac\left(\frac\right) \frac \\ pt&= \frac\left(\left(\frac\right)^\right) \left(\frac\right)^ \\ pt&= - \left(\frac\right)^ \frac \left(\frac\right)^ = - \left(\frac\right)^ \frac \\ pt&= \frac\left(\frac\left(\frac\right)^\right) \end To reemphasize: what's been accomplished is that the second derivative with respect to t has been expressed as a derivative of x. The original second order equation can now be integrated: \begin \frac &= f(x) \\ \frac\left(\frac\left(\frac\right)^\right) &= f(x) \\ \left(\frac\right)^ &= 2 \int f(x) dx + C_1 \\ \frac &= \pm \frac \\ t + C_2 &= \pm \int \frac \end This is an implicit solution. The greatest potential problem is inability to simplify the integrals, which implies difficulty or impossibility in evaluating the integration constants.


Special case:

Using the above approach, the technique can extend to the more general equation \frac = \left(\frac\right)^n f(x) where n is some parameter not equal to two. This will work since the second derivative can be written in a form involving a power of x'. Rewriting the second derivative, rearranging, and expressing the left side as a derivative: \begin &- \left(\frac\right)^ \frac = \left(\frac\right)^ f(x) \\ pt&- \left(\frac\right)^ \frac = f(x) \\ pt&\frac\left(\frac\left(\frac\right)^\right) = f(x) \\ pt&\left(\frac\right)^ = (2 - n) \int f(x) dx + C_1 \\ pt&t + C_2 = \int \left((2 - n) \int f(x) dx + C_1\right)^ dx \end The right will carry +/− if n is even. The treatment must be different if n = 2: \begin - \left(\frac\right)^ \frac &= f(x) \\ -\frac\left(\ln\left(\frac\right)\right) &= f(x) \\ \frac &= C_1 e^ \\ t + C_2 &= C_1 \int e^ dx \end


Higher orders

There is no analogous method for solving third- or higher-order autonomous equations. Such equations can only be solved exactly if they happen to have some other simplifying property, for instance linearity or dependence of the right side of the equation on the dependent variable only (i.e., not its derivatives). This should not be surprising, considering that nonlinear autonomous systems in three dimensions can produce truly
chaotic Chaotic was originally a Danish trading card game. It expanded to an online game in America which then became a television program based on the game. The program was able to be seen on 4Kids TV (Fox affiliates, nationwide), Jetix, The CW4Kids ...
behavior such as the Lorenz attractor and the Rössler attractor. Likewise, general non-autonomous equations of second order are unsolvable explicitly, since these can also be chaotic, as in a periodically forced pendulum.


Multivariate case

In \mathbf x'(t) = A \mathbf x(t), where \mathbf x(t) is an n-dimensional column vector dependent on t. The solution is \mathbf x(t) = e^ \mathbf c where \mathbf c is an n \times 1 constant vector.


Finite durations

For non-linear autonomous ODEs it is possible under some conditions to develop solutions of finite duration, meaning here that from its own dynamics, the system will reach the value zero at an ending time and stays there in zero forever after. This finite-duration solutions cannot be analytical functions on the whole real line, and because they will being non-Lipschitz function at the ending time, they don´t stand uniqueness of solutions of Lipschitz differential equations. As example, the equation: :y'= -\text(y)\sqrt,\,\,y(0)=1 Admits the finite duration solution: :y(x)=\frac\left(1-\frac+\left, 1-\frac\\right)^2


See also

* Non-autonomous system (mathematics)


References

{{DEFAULTSORT:Autonomous System (Mathematics) Differential equations Dynamical systems Ordinary differential equations