Atmospheric Sciences Laboratory
   HOME

TheInfoList



OR:

The Atmospheric Sciences Laboratory (ASL) was a research institution under the
U.S. Army Materiel Command U.S. Army Materiel Command (AMC) is the primary provider of materiel to the United States Army. The Command's mission includes the management of installations, as well as maintenance and parts distribution. It was established on 8 May 1962 and wa ...
that specialized in artillery meteorology, electro-optical climatology, atmospheric optics data, and atmospheric characterization from 1965 to 1992. ASL was one of the seven Army laboratories that merged to form the U.S. Army Research Laboratory (ARL) in 1992.


Locations

The headquarters for the Atmospheric Sciences Laboratory and a bulk of its research facilities were located in White Sands Missile Range, New Mexico. Several of its research facilities were also located at
Fort Monmouth, New Jersey Fort Monmouth is a former installation of the Department of the Army in Monmouth County, New Jersey. The post is surrounded by the communities of Eatontown, New Jersey, Eatontown, Tinton Falls, New Jersey, Tinton Falls and Oceanport, New Jersey, O ...
. ASL meteorological teams were situated throughout North America at the following sites: Fort Hunter Liggett, California;
Redstone Arsenal, Alabama Redstone Arsenal (RSA) is a United States Army post and a census-designated place (CDP) adjacent to Huntsville in Madison County, Alabama, United States and is part of the Huntsville-Decatur Combined Statistical Area. The Arsenal is a garrison ...
;
Fort Belvoir, Virginia A fortification is a military construction or building designed for the defense of territories in warfare, and is also used to establish rule in a region during peacetime. The term is derived from Latin ''fortis'' ("strong") and ''facere'' ...
; Yuma Proving Ground, Arizona; Fort Huachuca, Arizona;
Aberdeen Proving Ground, Maryland Aberdeen Proving Ground (APG) (sometimes erroneously called Aberdeen Proving ''Grounds'') is a U.S. Army facility located adjacent to Aberdeen, Harford County, Maryland, United States. More than 7,500 civilians and 5,000 military personnel work at ...
; Dugway Proving Ground, Utah;
Fort Greely, Alaska Fort Greely is a census-designated place (CDP) in Southeast Fairbanks Census Area, Alaska, United States. It is home to the Fort Greely military installation. At the 2010 census the population was 539, up from 461 in 2000. Geography Fort Greely ...
; and the
Panama Canal The Panama Canal ( es, Canal de Panamá, link=no) is an artificial waterway in Panama that connects the Atlantic Ocean with the Pacific Ocean and divides North and South America. The canal cuts across the Isthmus of Panama and is a conduit ...
.


History

The history of ASL dates back to the creation of the Signal Corps Laboratories in 1929. During the 1930s and 1940s, the Signal Corps directed research on
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
,
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
, and communication systems at Fort Monmouth and nearby satellite laboratories. After
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposin ...
, several of the laboratories merged to form the Signal Corps Engineering Laboratories (SCEL), which continued research into advancing various Army technologies. On April 2, 1946, SCEL deployed a team of ten men from Fort Monmouth with two modified SCR-584 vans to “A” station at White Sands Proving Ground (later renamed White Sands Missile Range) to perform tests on the captured German V-2 rockets. From these tests, it became increasingly apparent after the war that atmospheric research was vital in predicting the behavior of missiles and where it would impact. On January 1, 1949, the
Department of the Army The United States Department of the Army (DA) is one of the three military departments within the Department of Defense of the U.S. The Department of the Army is the federal government agency within which the United States Army (U.S.) is org ...
established the SCEL Field Station No. 1 at Fort Bliss, Texas to aid the team at “A” station with signal support functions. The unit at Fort Bliss conducted research in radar tracking and communication systems for the early missile programs at White Sands Missile Range (WSMR), which then consisted of only 125 military and civilian personnel. In 1952, Field Station No. 1 was reorganized to form the White Sands Signal Corps Agency, a class II activity under the command of the Chief Signal Officer. In 1954, the group expanded to form three teams, one at Yuma Proving Ground, one Dugway Proving Ground, and one at the Canal Zone in Panama. The organization was mainly tasked with conducting high altitude and upper atmosphere research using various rockets from the Nike-Cajun rocket to the Army tactical Loki rocket in 1957 and the Arcas rocket in 1958. In the first ten months of 1958, the Agency provided communication-electronics support for the firing of more than 2,000 missiles. Within two decades, the organization launched more than 8,000 rockets around the world, of which 5,000 were launched at the nearby White Sands Missile Range. In addition, the White Sands Signal Corps Agency saw a string of successes in multiple areas of weather research. In 1957, the researchers launched Loki II rockets into the air and tracked the drift of the metallic chaff that was released at designated altitudes using radar, obtaining new knowledge of high altitude winds in the process. Later that same year, the WSMR team saw the first successful firing of a rocket capable of being launched by a two-man team. The Agency also perfected the Voice Operated Device for Automatic Transmission (VODAT), a device that made it possible for two-way radiotelephone conversations to occur on a single frequency. By 1959, the White Sands Signal Corps Agency had doubled in size and scope of operations and was redesignated as the U.S. Army Signal Missile Support Agency (SMSA). SMSA was responsible for providing communication-electronic, meteorologic, and other support for the Army's missile and space program as well as conduct research and development in
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not ...
,
electronic warfare Electronic warfare (EW) is any action involving the use of the electromagnetic spectrum (EM spectrum) or directed energy to control the spectrum, attack an enemy, or impede enemy assaults. The purpose of electronic warfare is to deny the opponen ...
, and missile vulnerability. The agency developed the SOTIM (Sonic Observation of Trajectory and Impact of Missiles) System, which provided acoustic information on missiles upon re-entry and impact. These stations were installed at 16 different points at WSMR and were also equipped to measure wind speed, temperature, and humidity. SMSA also built meteorological rockets that could carry a 70-pound instrument package as high as 600,000 feet in order to obtain upper atmospheric data. At the time, the meteorological activities at WSMR were under the jurisdiction of the U.S. Army Electronics Research and Development Activity as well as the Atmospheric Sciences Office, an organization under the operational control of SCEL at Fort Monmouth. In 1962, due to a major Army reorganization effort, SMSA became consolidated as part of the Electronics Research and Development Activity (ERDA) under the U.S. Army Electronics Command (ECOM). In 1964, ERDA researchers at WSMR became the first to observe upper atmosphere tidal waves. The group later launched the world's largest balloon holding atmospheric sensing equipment in 1968 and an even larger balloon that reached a record height of 164,000 feet in 1969. In June 1965, the Army Electronics Laboratories, which supervised the former Signal Corps research within the U.S. Army Electronics Command, was discontinued. As a result, the Army Electronics Laboratories and its components, including the different teams at WSMR, were broken up and reshuffled into six separate Army laboratories: the Electronic Components Laboratory (later the Electronics Technology and Devices Laboratory), the Communications/ADP Laboratory, the Atmospheric Sciences Laboratory, the Electronic Warfare Laboratory (part of which later became the Vulnerability Assessment Laboratory), the Avionics Laboratory, and the Combat Surveillance and Target Acquisition Laboratory. This event marked the beginning of the Atmospheric Sciences Laboratory and its role as a corporate laboratory for the Army. ASL was responsible for conducting meteorological research, developing meteorological equipment for the Army, and providing specialized meteorological support for various Army research and development efforts. At first, as a remnant of its days as part of the Signal Corps Engineering Laboratories, ASL headquarters were located at Fort Monmouth, New Jersey, meaning that researchers often traveled back and forth from Fort Monmouth to White Sands Missile Range. In 1969, ASL headquarters was moved to WSMR. Shortly afterwards, ARL assumed operational control of the meteorological efforts conducted at Fort Huachuca. By 1974, nearly a decade after ASL was first established, the lab grew to have a staff of more than 700 people accompanied by $30 million worth of equipment and 90,000 square feet of meteorological operating facilities at WSMR with an annual budget of around $9 million. In 1976, meteorological research conducted at the
Ballistic Research Laboratories The Ballistic Research Laboratory (BRL) was a leading United States Army, U.S. Army research establishment situated at Aberdeen Proving Ground, Maryland that specialized in ballistics (internal ballistics, interior, external ballistics, exterior, a ...
were also consolidated into ASL, resulting in ASL making up about 95 percent of the total Army program in meteorology. In 1992, ASL was among the seven Army laboratories that was consolidated to form the U.S. Army Research Laboratory as part of a $115 million project following the Base Realignment and Closure (BRAC) in 1988. Under ARL, the ASL became part of the Battlefield Environment Directorate (BED). In 1995, the Atmospheric Analysis and Assessment team within BED moved to ARL's Survivability/Lethality Analysis Directorate (SLAD) while the rest of BED was folded into the Information Science and Technology Directorate (later called the Computational and Information Sciences Directorate) in 1996.


Research

The Atmospheric Sciences Laboratory sought to enhance Army capabilities and operation, such as artillery fire and chemical detection operations, under a broad range of meteorological conditions through the development of new technology and techniques. Research within ASL consisted of six major areas: atmospheric sensing, micro/mesoscale meteorology, meteorological satellites, atmospheric modification, physics and chemistry of the atmosphere, and meteorological equipment and techniques.


Atmospheric sensing

Atmospheric sensing focuses on remote and continuous real-time surveillance of atmospheric parameters and being able to obtain meteorological information at any time and place. Various sensors were evaluated for this purpose, such as lasers, radars, radiometers, microwave radars, and acoustic systems. Research in the lab included studying atmospheric transmissivity, the effects of atmospheric particulates on laser propagation, and the use of
LIDAR Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
to determine the distribution, size, and composition of atmospheric particles. ASL scientists also investigated how light behaves and responds when it interacts with different particles in the air.


Microscale and mesoscale meteorology

Microscale The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Un ...
and mesoscale meteorology focuses on understanding the small-scale atmospheric processes in the lower atmosphere. For ASL, the primary objective was to examine the properties of the lower atmosphere within the battlefield area. This was done by developing models that described mesoscale systems, boundary layer phenomena, and the effects of terrain on atmospheric structure. ASL scientists were especially interested in how terrain influenced the processes of atmospheric transport and diffusion. Studies in this area also coincided with research related to reducing
air pollution Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. There are many different types ...
.


Meteorological satellites

Meteorological satellites A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting (covering the entire Earth asynchronously), or geo ...
refer to advanced weather satellites and other technologies that allow researchers to collect real-time weather information for the battlefield area. ASL researchers developed methods to improve the monitoring of mesoscale phenomena and collect meteorological data in inaccessible areas.


Atmospheric modification

Atmospheric modification focuses on physical atmospheric processes that influence the behavior of clouds, fog, and rain. ASL researchers were especially keen on studying warm fogs and developed numerical models that described their life cycle. In general,
fog Fog is a visible aerosol consisting of tiny water droplets or ice crystals suspended in the air at or near the Earth's surface. Reprint from Fog can be considered a type of low-lying cloud usually resembling stratus, and is heavily influ ...
significantly degrades the effectiveness of visible and infrared systems. ASL was interested in determining what kind of fog conditions hindered the fielding of different weapons systems that relied on electro-optical sensors. Field studies were also conducted to analyze how helicopter downwash could disperse warm fogs.


Physics and chemistry of the atmosphere

The physics and chemistry of the atmosphere refers to research on the chemical and dynamic processes that governed atmospheric structure and behavior. Many of the studies focused on investigating the atmospheric effects on artillery and unguided rockets. Research was also conducted on the meteorological processes occurring in high-altitude regions. ASL was involved in studying the effects of an
eclipse An eclipse is an astronomical event that occurs when an astronomical object or spacecraft is temporarily obscured, by passing into the shadow of another body or by having another body pass between it and the viewer. This alignment of three ce ...
on the upper atmosphere of the earth and the outer atmosphere of the sun. During the 1979 solar eclipse, ASL performed experiments with the
National Research Council of Canada The National Research Council Canada (NRC; french: Conseil national de recherches Canada) is the primary national agency of the Government of Canada dedicated to science and technology research & development. It is the largest federal research ...
, the Air Force Geophysics Laboratory, and
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeeding t ...
to measure various atmospheric properties during the eclipse by launching 17 sounding rockets into the upper atmosphere.


Meteorological equipment and techniques

One of ASL's main priorities was the development and evaluation of new meteorological equipment for the Army. Examples of technologies included new radiosondes, mobile hydrogen generators, fast-rise balloons, mobile weather radar, and portable automatic observing stations for collecting weather information in inaccessible areas.


Projects

The Atmospheric Sciences Laboratory developed many technologies as part of its mission. Examples include the following: * Automatic Meteorological Station (AN/TMQ-30): A surface weather system that measures meteorological conditions such as wind speed, temperature, and atmospheric pressure at remote sites. * Cold Fog Dissipator (AN/TMQ-27): A mobile system that uses
propane Propane () is a three-carbon alkane with the molecular formula . It is a gas at standard temperature and pressure, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is commonly used a ...
to dissipate fog in very small areas, such as helipads, for safer aircraft take-offs and landings. * Combined Obscuration Model for Battlefield-Induced Contaminants (COMBIC) model: A computer simulation model that predicts the effects of smoke, dust, and other obscurants on target acquisition and surveillance systems. * Electro-Optical Systems Atmospheric Effects Library (EOSAEL): A computer library composed of modules that simulates the effects of different atmospheric phenomena on battlefield activity. * Sonic Observation of Trajectory and Impact of Missile (SOTIM): A passive acoustic system that reads shockwaves to calculate the precise impact point of rockets and rocket payloads in order to recover them easier. * Statistical Texturing Application to Battlefield-Induced Clouds (STATBIC) model: A cloud visualization algorithm that models the unpredictable characteristics of real battlefield clouds. * Visioceilometer: A portable LIDAR system that measures cloud ceiling height and calculates atmosphere visibility. * Mobile Imaging Spectroscopy Laboratory (MISL): A remotely controlled thermal imaging system that characterizes the changes in spectral and spatial propagation of images as a function of atmospheric conditions in real time for weapon system comparison testing and performance modeling. In addition, ASL participated in hundreds of projects, including the support of the following technologies: * Firefinder radar ( AN/TPQ series): A radar system designed to measure wind profiles in certain atmospheric conditions. * Field Artillery Meteorological Acquisition System (FAMAS): A mobile, data-processing system designed to accompany Army field artillery units to provide meteorological data. * High Energy Laser (HEL): Weapon systems that use high-energy lasers to destroy or disable an enemy target. * Integrated Meteorological System (IMETS): A vehicle-mounted, automated tactical system that receives, processes, and disseminates weather data. *
NAVSTAR GPS The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sys ...
: A precursor to the modern GPS system. * Pocket Radiation Detector (RADIAC): A handheld sensor device that can detect and measure radiation from nuclear detonation and fallout.


See also

* Electronics Technology and Devices Laboratory * Vulnerability Assessment Laboratory * Signal Corps Laboratories * White Sands Missile Range


References

{{coord missing, New Mexico Military in New Mexico Military installations in New Mexico Research installations of the United States Army White Sands Missile Range