''Astronomia nova'' (
English
English usually refers to:
* English language
* English people
English may also refer to:
Peoples, culture, and language
* ''English'', an adjective for something of, from, or related to England
** English national ide ...
: ''New Astronomy'', full title in original
Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
: ) is a book, published in 1609, that contains the results of the astronomer
Johannes Kepler
Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
's ten-year-long investigation of the motion of
Mars
Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
.
One of the most significant books in the
history of astronomy
Astronomy is the oldest of the natural sciences, dating back to antiquity, with its origins in the religious, mythological, cosmological, calendrical, and astrological beliefs and practices of prehistory: vestiges of these are still found in ...
, the ''Astronomia nova'' provided strong arguments for
heliocentrism and contributed valuable insight into the movement of the planets. This included the first mention of the planets' elliptical paths and the change of their movement to the movement of free floating bodies as opposed to objects on rotating spheres. It is recognized as one of the most important works of the
Scientific Revolution
The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transfo ...
.
Background
Prior to Kepler,
Nicolaus Copernicus
Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic Church, Catholic cano ...
proposed in 1543 that the Earth and other planets orbit the Sun. The Copernican model of the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
was regarded as a device to explain the observed positions of the planets rather than a physical description.
Kepler sought for and proposed physical causes for planetary motion. His work is primarily based on the research of his mentor,
Tycho Brahe
Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was k ...
. The two, though close in their work, had a tumultuous relationship. Regardless, in 1601 on his deathbed, Brahe asked Kepler to make sure that he did not "die in vain," and to continue the development of
his model of the Solar System. Kepler would instead write the ''Astronomia nova'', in which he rejects the Tychonic system, as well as the
Ptolemaic system
In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, an ...
and the
Copernican system. Some scholars have speculated that Kepler's dislike for Brahe may have had a hand in his rejection of the Tychonic system and formation of a new one.
By 1602, Kepler set to work on determining the orbit pattern of Mars, keeping
David Fabricius David Fabricius (9 March 1564 – 7 May 1617) was a German pastor who made two major discoveries in the early days of telescopic astronomy, jointly with his eldest son, Johannes Fabricius (1587–1615).
David Fabricius (Latinization of his proper n ...
informed of his progress. He suggested the possibility of an oval orbit to Fabricius by early 1604, though was not believed. Later in the year, Kepler wrote back with his discovery of Mars's
elliptical
Elliptical may mean:
* having the shape of an ellipse, or more broadly, any oval shape
** in botany, having an elliptic leaf shape
** of aircraft wings, having an elliptical planform
* characterised by ellipsis (the omission of words), or by conc ...
orbit. The manuscript for ''Astronomia nova'' was completed by September 1607, and was in print by August 1609.
Structure and summary
In English, the full title of his work is the ''New Astronomy, Based upon Causes, or Celestial Physics, Treated by Means of Commentaries on the Motions of the Star Mars, from the Observations of Tycho Brahe, Gent''. For over 650 pages, Kepler walks his readers, step by step, through his process of discovery.
The discussion of scripture in the ''Astronomia nova''s introduction was the most widely distributed of Kepler's works in the seventeenth century.
The introduction outlines the four steps Kepler took during his research.
*The first step is his claim that the Sun itself and not any imaginary point near the Sun (as in the
Copernican system) is the point where all the planes of the eccentrics of the planets intersect, or the center of the orbits of the planets.
*The second step consists of Kepler placing the Sun as the center and mover of the other planets. This step also contains Kepler's reply to objections against placing the Sun at the center of the universe, including objections based on scripture. In reply to scripture, he argues that it is not meant to claim physical dogma, and the content should be taken spiritually.
*In the third step, he posits that the Sun is the source of the motion of all planets, using Brahe’s proof based on comets that planets do not rotate on orbs.
*The fourth step consists of describing the path of planets as not a circle, but an
oval
An oval () is a closed curve in a plane which resembles the outline of an egg. The term is not very specific, but in some areas (projective geometry, technical drawing, etc.) it is given a more precise definition, which may include either one or ...
.
As the ''Astronomia nova'' proper starts, Kepler demonstrates that the Tychonic, Ptolemaic, and Copernican systems are indistinguishable on the basis of observations alone. The three models predict the same positions for the planets in the near term, although they diverge from historical observations, and fail in their ability to predict future planetary positions by a small, though absolutely measurable amount. Kepler here introduces his famous diagram of the movement of Mars in relation to Earth if Earth remained unmoving at the center of its orbit. The diagram shows that Mars's orbit would be completely imperfect and never follow along the same path.
Kepler discusses all his work at great length throughout the book. He addresses this length in the sixteenth chapter:
If thou art bored with this wearisome method of calculation, take pity on me, who had to go through with at least seventy repetitions of it, at a very great loss of time.
Kepler, in a very important step, also questions the assumption that the planets move around the center of their orbit at a uniform rate. He finds that computing critical measurements based upon the Sun's actual position in the sky, instead of the Sun's
"mean" position injects a significant degree of uncertainty into the models, opening the path for further investigations. The idea that the planets do not move at a uniform rate, but at a speed that varies as their distance from the Sun, was completely revolutionary and would become his second law (discovered before his first). Kepler, in his calculations leading to his second law, made multiple mathematical errors, which luckily cancelled each other out “as if by miracle.”
Given this second law, he puts forth in Chapter 33 that the Sun is the engine that moves the planets. To describe the motion of the planets, he claims the Sun emits a physical species, analogous to the light it also emits, which pushes the planets along. He also suggests a second force within every planet itself that pulls it towards the Sun to keep it from spiraling off into space.
Kepler then attempts to find the true shape of planetary orbits, which he determines is elliptical. His initial attempt to define the orbit of Mars as a circle was off by only eight
minutes of arc
A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The n ...
, but this was enough for him to dedicate six years to resolve the discrepancy. The data seemed to produce a symmetrical oviform curve inside of his predicted circle. He first tested an egg shape, then engineered a theory of an orbit which oscillates in diameter, and returned to the egg. Finally, in early 1605, he geometrically tested an ellipse, which he had previously assumed to be too simple a solution for earlier astronomers to have overlooked. Ironically, he had already derived this solution trigonometrically many months earlier. As he says,
I laid he original equation
He or HE may refer to:
Language
* He (pronoun), an English pronoun
* He (kana), the romanization of the Japanese kana へ
* He (letter), the fifth letter of many Semitic alphabets
* He (Cyrillic), a letter of the Cyrillic script called ''He'' ...
aside, and fell back on ellipses, believing that this was quite a different hypothesis, whereas the two, as I shall prove in the next chapter, are one in the same... Ah, what a foolish bird I have been!
Kepler's laws
The ''Astronomia nova'' records the discovery of the first two of the three principles known today as
Kepler's laws of planetary motion
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits ...
, which are:
#That the planets move in elliptical orbits with the Sun at one
focus
Focus, or its plural form foci may refer to:
Arts
* Focus or Focus Festival, former name of the Adelaide Fringe arts festival in South Australia Film
*''Focus'', a 1962 TV film starring James Whitmore
* ''Focus'' (2001 film), a 2001 film based ...
.
#That the speed of the planet changes at each moment such that the time between two positions is always proportional to the area swept out on the orbit between these positions.
Kepler discovered the "second law" before the first. He presented his second law in two different forms: In Chapter 32 he states that the speed of the planet varies inversely based upon its distance from the Sun, and therefore he could measure changes in position of the planet by adding up all the distance measures, or looking at the area along an orbital arc. This is his so-called "distance law". In Chapter 59, he states that a radius from the Sun to a planet sweeps out equal areas in equal times. This is his so-called "area law".
However, Kepler's "area-time principle" did not facilitate easy calculation of planetary positions. Kepler could divide up the orbit into an arbitrary number of parts, compute the planet's position for each one of these, and then refer all questions to a table, but he could not determine the position of the planet at each and every individual moment because the speed of the planet was always changing. This paradox, referred to as the "
Kepler problem
In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force ''F'' that varies in strength as the inverse square of the distance ''r'' between them. The force may be ei ...
," prompted the development of
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
.
A decade after the publication of the ''Astronomia nova'', Kepler discovered his "third law", published in his 1619 ''
Harmonices Mundi
''Harmonice Mundi (Harmonices mundi libri V)''The full title is ''Ioannis Keppleri Harmonices mundi libri V'' (''The Five Books of Johannes Kepler's The Harmony of the World''). (Latin: ''The Harmony of the World'', 1619) is a book by Johannes ...
'' (''Harmonies of the world''). He found that the ratio of the cube of the length of the semi-major axis of each planet's orbit, to the square of time of its orbital period, is the same for all planets.
Kepler's knowledge of gravity
In his introductory discussion of a moving earth, Kepler addressed the question of how the Earth could hold its parts together if it moved away from the center of the universe which, according to
Aristotelian physics
Aristotelian physics is the form of natural science described in the works of the Greek philosopher Aristotle (384–322 BC). In his work ''Physics'', Aristotle intended to establish general principles of change that govern all natural bodies, b ...
, was the
place
Place may refer to:
Geography
* Place (United States Census Bureau), defined as any concentration of population
** Census-designated place, a populated area lacking its own Municipality, municipal government
* "Place", a type of street or road ...
toward which all heavy bodies naturally moved. Kepler proposed an attractive force similar to
magnetism
Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
, which may have been known by Newton.
Gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
is a mutual corporeal disposition among kindred bodies to unite or join together; thus the earth attracts a stone much more than the stone seeks the earth. (The magnetic faculty is another example of this sort).... If two stones were set near one another in some place in the world outside the sphere of influence of a third kindred body, these stones, like two magnetic bodies, would come together in an intermediate place, each approaching the other by a space proportional to the bulk 'moles''of the other.... For it follows that if the earth's power of attraction will be much more likely to extend to the moon and far beyond, and accordingly, that nothing that consists to any extent whatever of terrestrial material, carried up on high, ever escapes the grasp of this mighty power of attraction.
Kepler discusses the Moon's gravitational effect upon the tides as follows:
The sphere of the attractive virtue which is in the moon extends as far as the earth, and entices up the waters; but as the moon flies rapidly across the zenith, and the waters cannot follow so quickly, a flow of the ocean is occasioned in the torrid zone towards the westward. If the attractive virtue of the moon extends as far as the earth, it follows with greater reason that the attractive virtue of the earth extends as far as the moon and much farther; and, in short, nothing which consists of earthly substance anyhow constituted although thrown up to any height, can ever escape the powerful operation of this attractive virtue.
Kepler also clarifies the concept of lightness in terms of relative density, in opposition to the Aristotelian concept of the absolute nature or quality of lightness as follows. His argument could easily be applied today to something like the flight of a hot air balloon.
Nothing which consists of corporeal matter is absolutely light, but that is comparatively lighter which is rarer, either by its own nature, or by accidental heat. And it is not to be thought that light bodies are escaping to the surface of the universe while they are carried upwards, or that they are not attracted by the earth. They are attracted, but in a less degree, and so are driven outwards by the heavy bodies; which being done, they stop, and are kept by the earth in their own place.[
]
In reference to Kepler's discussion relating to gravitation, Walter William Bryant makes the following statement in his book
''Kepler'' (1920).
...the Introduction to Kepler's "Commentaries on the Motion of Mars," always regarded as his most valuable work, must have been known to Newton, so that no such incident as the fall of an apple was required to provide a necessary and sufficient explanation of the genesis of his Theory of Universal Gravitation. Kepler's glimpse at such a theory could have been no more than a glimpse, for he went no further with it. This seems a pity, as it is far less fanciful than many of his ideas, though not free from the "virtues" and "animal faculties," that correspond to Gilbert's "spirits and humours".[
]
Kepler considered that this attraction was mutual and was proportional to the bulk of the bodies, but he considered it to have a limited range and he did not consider whether or how this force may have varied with distance. Furthermore, this attraction only acted between "kindred bodies"—bodies of a similar nature, a nature which he did not clearly define. Kepler's idea differed significantly from Newton's later concept of gravitation and it can be "better thought of as an episode in the struggle for
heliocentrism than as a step toward
Universal gravitation
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distanc ...
."
Kepler sent
Galileo
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
the book while the latter was working on his ''
Dialogue Concerning the Two Chief World Systems
The ''Dialogue Concerning the Two Chief World Systems'' (''Dialogo sopra i due massimi sistemi del mondo'') is a 1632 Italian-language book by Galileo Galilei comparing the Copernican system with the traditional Ptolemaic system. It was tran ...
'' (published in 1632, two years after Kepler's death). Galileo had been trying to determine the path of an object falling from rest towards the center of the Earth, but used a semicircular orbit in his calculation.
Commemoration
The 2009
International Year of Astronomy
The International Year of Astronomy (IYA2009) was a year-long celebration of astronomy that took place in 2009 to coincide with the 400th anniversary of the first recorded astronomical observations with a telescope by Galileo Galilei and the pu ...
commemorates the 400th anniversary of the publication of this work.
Notes
References
* Johannes Kepler, ''New Astronomy,'' translated by William H. Donahue, Cambridge: Cambridge Univ. Pr., 1992.
Kepler's ''Astronomia Nova''
External links
''Astronomia nova''by Johannes Kepler, 1609, in Latin, full text scan
''Astronomia nova''by Johannes Kepler, 1609, in Latin, full text at archive.org
{{DEFAULTSORT:Astronomia Nova
1609 books
Astronomy books
17th-century Latin books
Physics books
Historical physics publications
History of astronomy
1609 in science
Works by Johannes Kepler