Aspergillus Sclerotiorum
   HOME

TheInfoList



OR:

''Aspergillus sclerotiorum'' is a
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate s ...
of fungus in the
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In the hierarchy of biological classification, genus com ...
''
Aspergillus ' () is a genus consisting of several hundred mold species found in various climates worldwide. ''Aspergillus'' was first catalogued in 1729 by the Italian priest and biologist Pier Antonio Micheli. Viewing the fungi under a microscope, Mic ...
''. It is from the ''Circumdati'' section. The species was first described in 1933. ''A. sclerotiorum'' has been reported to produce penicillic acid, xanthomegnin, viomellein, and vioxanthin. In 2016, the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ge ...
of ''A. sclerotiorum'' was
sequenced In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which suc ...
as a part of the ''Aspergillus'' whole-genome sequencing project - a project dedicated to performing whole-genome sequencing of all members of the genus ''Aspergillus''. The genome assembly size was 37.97 Mbp.


Growth and morphology

''Aspergillus sclerotiorum'' has been cultivated on both Czapek yeast extract agar (CYA) plates and Malt Extract Agar Oxoid® (MEAOX) plates. The growth morphology of the colonies can be seen in the pictures below. Aspergillus_sclerotiorum_cya.png, ''Aspergillus sclerotiorum'' growing on CYA plate Aspergillus_sclerotiorum_meaox.png, ''Aspergillus sclerotiorum'' growing on MEAOX plate


Heavy Metal Tolerance

In a study published in Dec 2020, cadmium, chromium, and lead tolerant microbes have been isolated from contaminated mining soil and characterized. Six soil samples were collected from Nanjing mine (32°09′19.29″ N 118°56′57.04″ E). Soil samples were taken from the depth of 0~30 cm and processed within 8 h. After the collection of soil samples, these were kept on dry ice and further used to isolate fungi. Aspergillus Sclerotiorum was one of 5 identified strains that exhibited tolerance to all 3 of these heavy metals. Molecular characterization of isolated fungi was performed and amplified sequences were deposited in the GenBank NCBI database. Metal tolerance of the various strains has been determined by measuring the minimum inhibitory concentrations (MICs) and the tolerance indexes of all the tested strains against Cd, Cr, and Pb. Bioaccumulation capacities of Trichoderma harzianum and Komagataella phaffi have also been assessed. These findings helped us find a novel strain of Komagataella phaffi and suggested it to be the potential mycoremediation microbe to alleviate the contamination of Cd, Cr, and Pb. Future studies of this fungal strain can help us to understand its resistance mechanism against other heavy metals, too.


References

sclerotiorum Fungi described in 1933 {{Eurotiomycetes-stub