Biomimetic features
Neuromast
In the artificial lateral line, neuromast's function is carried out by using transducers. These tiny structures employ various systems such asDivision of labor
There is a division of labor technique employed in these systems wherein superficial neuromasts located on the epidermis senses low frequencies as well as direct current (flow) while the canal neuromast located beneath the epidermis enclosed in canals detect alternating current using pressure gradients. In these systems wherein superficial neuromasts located on the epidermis sense low frequencies as well as direct current while the canal neuromast located beneath the epidermis enclosed in canals detect alternating current using pressure gradientsCupula
Cupula is a gelatinous sack covering over hair like neuromast protruding from the skin. Cupula formed over neuromast is another feature that developed over time that provides a better response to the flow field. Cupular fibrils extend from the hair-like neuromast. Cupula helps attenuate low-frequency signals by virtue of its inertia and amplify higher frequency signals due to the leverage. In addition, these extended structures provide better sensitivity when the neuromast is submerged in the boundary layer. Recent studies uses drop casting, wherein dripping of HA-MA solution over the electrospun scaffolding to create a gravity driven prolate spheroid shaped cupula formation. Experimental comparison between the naked sensor and the newly developed sensor reveal positive resultsCanals
Canal Neuromasts are enclosed in canals that run across the body. These canals filter out low-frequency flow that could saturate the system. A certain pattern is found in the concentration of neuromasts along the body among of aquatic species. The canal system is found to be running along the body in a single line that tend to branch out near the head. In fishes, the canal location is suggestive of the hydrodynamic information that is available during swimming. The exact placement of canals varies across species, a suggestive sign of functional role rather than developmental constraintCanal distribution along the body
Commonly, the canal concentration peaks near the nose and drops significantly over the rest of the body. This trend is found in fish of varying sizes that occupy different habitats and across a variety of species. Some studies hypothesize the close connection between canal location and bone development and how they are morphologically constrained. The exact placement of canals varies across species and can be a suggestive sign of functional role rather than developmental constraint.Canal flexibility
The flexibility of the canal system has a significant effect on low-frequency signal attenuation. The flexibility of the sensing element placed in the canal system may add to the sensitivity of the Canal Artificial Line (CALL) system. Experimental data proves that this factor creates a significant jump in the sensitivity of the system. Geometric improvements in the canal system and optimizing the sensing equipment for better results.Constrictions in canals near neuromast
At higher pressure gradients, the voltage output of devices with wall constrictions near the sensors in the canal lateral line( CALL) were much more sensitive and according to Y Jiang, Z Ma, J Fu, ''et al'' their system could perceive a pressure gradient as low as 3.2 E−3 Pa/5 mm comparable to that of Cottus bairdii found in nature. Additionally, this feature attenuates low-frequency hydrodynamic signals.Applications
Navigation in shallow water bodies present a challenge especially for submersible vehicles. Flow fluctuations may adversely affect the trajectory of the craft making on-line detection and real time reaction an absolute necessity for adaptability. Progress in the field of artificial lateral line has benefited various fields other than underwater navigation. A major example is the field of seismic imaging. The idea of selective frequency response in superficial neuromast has encouraged scientists to design new methods to develop seismic images of features under the ocean using half the data to generate images with higher resolution compared to traditional methods in addition to saving time required for processingSimilar systems
Electrosensory lateral line (ELL) employs passive electrolocation except for certain groups of freshwater fish that utilize active electrolocation to emit and receive electric fields. It can be distinguished from LLS based on the acute difference in their operation besides similar roles Integumentary Sensory Organs (ISO’s) are other sensory dome-shaped organs found in the cranial region of crocodiles. It is a collection of sensory organs that can detect mechanical, ph and thermal changes. These mechanoreceptors are classified into two. The first of which is Slow Adapting receptors (SA) that sense steady flow. The second is Rapid Adapting receptors (RA) that sense oscillatory stimuli. ISO can potentially detect direction of disturbance with high accuracy in 3D space.{{Cite journal, last=Elgar Kanhere, Nan Wang, Ajay Giri Prakash Kottapall, Mohsen Asadnia , Vignesh Subramaniam, Jianmin Miao and Michael Triantafyllou, date=2016, title=Crocodile-inspired dome-shaped pressure receptors for passive hydrodynamic sensing, journal=Bioinspiration and Biomimetics, volume=11, issue=5, pages=056007, via=IOP Publishing, bibcode=2016BiBi...11e6007K, doi=10.1088/1748-3190/11/5/056007 Whiskers in harbor seal is another example. In addition some microorganisms use hydrodynamic imaging to predate.References