Approximate Counting
   HOME

TheInfoList



OR:

An approximation is anything that is intentionally similar but not exactly
equal Equal(s) may refer to: Mathematics * Equality (mathematics). * Equals sign (=), a mathematical symbol used to indicate equality. Arts and entertainment * ''Equals'' (film), a 2015 American science fiction film * ''Equals'' (game), a board game ...
to something else.


Etymology and usage

The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the
prefix A prefix is an affix which is placed before the Word stem, stem of a word. Adding it to the beginning of one word changes it into another word. For example, when the prefix ''un-'' is added to the word ''happy'', it creates the word ''unhappy'' ...
''ad-'' (''ad-'' before ''p'' becomes ap- by
assimilation Assimilation may refer to: Culture *Cultural assimilation, the process whereby a minority group gradually adapts to the customs and attitudes of the prevailing culture and customs **Language shift, also known as language assimilation, the progre ...
) meaning ''to''. Words like ''approximate'', ''approximately'' and ''approximation'' are used especially in technical or scientific contexts. In everyday English, words such as ''roughly'' or ''around'' are used with a similar meaning. It is often found abbreviated as ''approx.'' The term can be applied to various properties (e.g., value, quantity, image, description) that are nearly, but not exactly correct; similar, but not exactly the same (e.g., the approximate time was 10 o'clock). Although approximation is most often applied to numbers, it is also frequently applied to such things as mathematical functions, shapes, and physical laws. In science, approximation can refer to using a simpler process or model when the correct model is difficult to use. An approximate model is used to make calculations easier. Approximations might also be used if incomplete information prevents use of exact representations. The type of approximation used depends on the available information, the degree of accuracy required, the sensitivity of the problem to this data, and the savings (usually in time and effort) that can be achieved by approximation.


Mathematics

Approximation theory In mathematics, approximation theory is concerned with how function (mathematics), functions can best be approximation, approximated with simpler functions, and with quantitative property, quantitatively characterization (mathematics), characteri ...
is a branch of mathematics, a quantitative part of functional analysis. Diophantine approximation deals with approximations of real numbers by rational numbers. Approximation usually occurs when an exact form or an exact numerical number is unknown or difficult to obtain. However some known form may exist and may be able to represent the real form so that no significant deviation can be found. For example, 1.5 × 106 means that the approximation 1,500,000 has been measured to the nearest hundred thousand (the actual value is somewhere between 1,450,000 and 1,550,000), this is in contrast to the notation 1.500 × 106 which measures 1,500,000 to the nearest thousand (therefore giving a true value somewhere between 1,499,500 and 1,500,500). It also is used when a number is not rational, such as the number π, which often is shortened to 3.14159, or 1.414 as the shortened form of . Numerical approximations sometimes result from using a small number of
significant digits Significant figures (also known as the significant digits, ''precision'' or ''resolution'') of a number in positional notation are digits in the number that are reliable and necessary to indicate the quantity of something. If a number expre ...
. Calculations are likely to involve
rounding errors A roundoff error, also called rounding error, is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. Rounding errors are d ...
and other
approximation error The approximation error in a data value is the discrepancy between an exact value and some ''approximation'' to it. This error can be expressed as an absolute error (the numerical amount of the discrepancy) or as a relative error (the absolute er ...
s. Log tables, slide rules and calculators produce approximate answers to all but the simplest calculations. The results of computer calculations are normally an approximation expressed in a limited number of significant digits, although they can be programmed to produce more precise results. Approximation can occur when a decimal number cannot be expressed in a finite number of binary digits. Related to approximation of functions is the
asymptotic In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
value of a function, i.e. the value as one or more of a function's parameters becomes arbitrarily large. For example, the sum (''k''/2)+(''k''/4)+(''k''/8)+...(''k''/2^''n'') is asymptotically equal to ''k''. No consistent notation is used throughout mathematics and some texts use ≈ to mean approximately equal and ~ to mean asymptotically equal whereas other texts use the symbols the other way around.


Typography

The approximately equals sign, ≈, was introduced by British mathematician Alfred Greenhill.


LaTeX symbols

Symbols used in LaTeX markup. * \approx (\approx), usually to indicate approximation between numbers, like \pi \approx 3.14. * \not\approx (\not\approx), usually to indicate that numbers are not approximately equal (1 \not\approx 2). * \simeq (\simeq), usually to indicate asymptotic equivalence between functions, like f(n) \simeq 3n^2 . So writing \pi \simeq 3.14 would be wrong under this definition, despite wide use. * \sim (\sim), usually to indicate proportionality between functions, the same f(n) of the line above will be f(n) \sim n^2 . * \cong (\cong), usually to indicate congruence between figures, like \Delta ABC \cong \Delta A'B'C' . * \eqsim (\eqsim), usually to indicate that two quantities are equal up to constants. * \lessapprox (\lessapprox) and \gtrapprox (\gtrapprox), usually to indicate that either the inequality holds or the two values are approximately equal.


Unicode

Symbols used to denote items that are approximately equal are wavy or dotted equals signs. * : which is also sometimes used to indicate proportionality * : which is also sometimes used to indicate proportionality * : another combination of "≈" and "=", which is used to indicate isomorphism or
congruence Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In mod ...
* * * * * : yet another combination of "≈" and "=", used to indicate equivalence or approximate equivalence * : which can be used to represent the approach of a variable, , to a
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
; like the common syntax, \scriptstyle \lim_ y(x) ≐ 0 * : which is used like "" or "" in
Japan Japan ( ja, 日本, or , and formally , ''Nihonkoku'') is an island country in East Asia. It is situated in the northwest Pacific Ocean, and is bordered on the west by the Sea of Japan, while extending from the Sea of Okhotsk in the north ...
, Taiwan, and Korea * : a reversed variation of * * *


Science

Approximation arises naturally in scientific experiments. The predictions of a scientific theory can differ from actual measurements. This can be because there are factors in the real situation that are not included in the theory. For example, simple calculations may not include the effect of air resistance. Under these circumstances, the theory is an approximation to reality. Differences may also arise because of limitations in the measuring technique. In this case, the measurement is an approximation to the actual value. The
history of science The history of science covers the development of science from ancient times to the present. It encompasses all three major branches of science: natural, social, and formal. Science's earliest roots can be traced to Ancient Egypt and Meso ...
shows that earlier theories and laws can be ''approximations'' to some deeper set of laws. Under the
correspondence principle In physics, the correspondence principle states that the behavior of systems described by the theory of quantum mechanics (or by the old quantum theory) reproduces classical physics in the limit of large quantum numbers. In other words, it says t ...
, a new scientific theory should reproduce the results of older, well-established, theories in those domains where the old theories work. The old theory becomes an approximation to the new theory. Some problems in physics are too complex to solve by direct analysis, or progress could be limited by available analytical tools. Thus, even when the exact representation is known, an approximation may yield a sufficiently accurate solution while reducing the complexity of the problem significantly. Physicists often approximate the
shape of the Earth Figure of the Earth is a term of art in geodesy that refers to the size and shape used to model Earth. The size and shape it refers to depend on context, including the precision needed for the model. A sphere is a well-known historical approxim ...
as a sphere even though more accurate representations are possible, because many physical characteristics (e.g., gravity) are much easier to calculate for a sphere than for other shapes. Approximation is also used to analyze the motion of several planets orbiting a star. This is extremely difficult due to the complex interactions of the planets' gravitational effects on each other. An approximate solution is effected by performing iterations. In the first iteration, the planets' gravitational interactions are ignored, and the star is assumed to be fixed. If a more precise solution is desired, another iteration is then performed, using the positions and motions of the planets as identified in the first iteration, but adding a first-order gravity interaction from each planet on the others. This process may be repeated until a satisfactorily precise solution is obtained. The use of
perturbations Perturbation or perturb may refer to: * Perturbation theory, mathematical methods that give approximate solutions to problems that cannot be solved exactly * Perturbation (geology), changes in the nature of alluvial deposits over time * Perturbatio ...
to correct for the errors can yield more accurate solutions. Simulations of the motions of the planets and the star also yields more accurate solutions. The most common versions of philosophy of science accept that empirical
measurement Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared ...
s are always ''approximations'' — they do not perfectly represent what is being measured.


Law

Within the European Union (EU), "approximation" refers to a process through which EU legislation is implemented and incorporated within
Member States A member state is a state that is a member of an international organization or of a federation or confederation. Since the World Trade Organization (WTO) and the International Monetary Fund (IMF) include some members that are not sovereign states ...
' national laws, despite variations in the existing legal framework in each country. Approximation is required as part of the pre-accession process for new member states,European Commission
Guide to the Approximation of European Union Environmental Legislation
last updated 2 August 2019, accessed 15 November 2022
and as a continuing process when required by an EU Directive. ''Approximation'' is a key word generally employed within the title of a directive, for example the Trade Marks Directive of 16 December 2015 serves "to approximate the laws of the Member States relating to trade marks".EUR-Lex
Directive (EU) 2015/2436 of the European Parliament and of the Council of 16 December 2015 to approximate the laws of the Member States relating to trade marks (recast) (Text with EEA relevance)
published 23 December 2015, accessed 15 November 2022
The European Commission describes approximation of law as "a unique obligation of membership in the European Union".


See also

* * * * * * Double tilde (disambiguation)Various meanings of ~~ or ≈ * * * * * * * * * * * * * *


References


External links

* {{Authority control Numerical analysis Equivalence (mathematics) Comparison (mathematical)