HOME

TheInfoList



OR:

In the historical study of mathematics, an apotome is a line segment formed from a longer line segment by breaking it into two parts, one of which is commensurable only in power to the whole; the other part is the apotome. In this definition, two line segments are said to be "commensurable only in power" when the ratio of their lengths is an
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integ ...
but the ratio of their squared lengths is rational. Translated into modern algebraic language, an apotome can be interpreted as a
quadratic irrational In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible ...
number formed by subtracting one
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . E ...
of a rational number from another. This concept of the apotome appears in ''
Euclid's Elements The ''Elements'' ( grc, Στοιχεῖα ''Stoikheîa'') is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt 300 BC. It is a collection of definitions, postulat ...
'' beginning in book X, where
Euclid Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' trea ...
defines two special kinds of apotomes. In an apotome of the first kind, the whole is rational, while in an apotome of the second kind, the part subtracted from it is rational; both kinds of apotomes also satisfy an additional condition. Euclid Proposition XIII.6 states that, if a rational line segment is split into two pieces in the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( ...
, then both pieces may be represented as apotomes.Euclid Proposition XIII.6


References

Mathematical terminology Euclidean geometry {{numtheory-stub