HOME

TheInfoList



OR:

The anti-greenhouse effect is a process that occurs when energy from a celestial object's sun is absorbed or scattered by the object's
upper atmosphere Upper atmosphere is a collective term that refers to various layers of the atmosphere of the Earth above the troposphere and corresponding regions of the atmospheres of other planets, and includes: * The mesosphere, which on Earth lies between the ...
, preventing that energy from reaching the surface, which results in surface cooling – the opposite of the
greenhouse effect The greenhouse effect is a process that occurs when energy from a planet's host star goes through the planet's atmosphere and heats the planet's surface, but greenhouse gases in the atmosphere prevent some of the heat from returning directly ...
. In an ideal case where the upper atmosphere absorbs all sunlight and is nearly
transparent Transparency, transparence or transparent most often refer to: * Transparency (optics), the physical property of allowing the transmission of light through a material They may also refer to: Literal uses * Transparency (photography), a still, ...
to
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
(heat) energy from the surface, the surface temperature would be reduced by 16%, which is a significant amount of cooling. This case is described in more detail below. Coined by Dr. Christopher McKay in 1991, the anti-greenhouse effect was first observed on Saturn's moon, Titan. In Titan's stratosphere, a
haze Haze is traditionally an atmospheric phenomenon in which dust, smoke, and other dry particulates suspended in air obscure visibility and the clarity of the sky. The World Meteorological Organization manual of codes includes a classification ...
composed of
organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ Chemistry * Organic matter, matter that has come from a once-living organism, is capable of decay or is the product ...
aerosol An aerosol is a suspension (chemistry), suspension of fine solid particles or liquid Drop (liquid), droplets in air or another gas. Aerosols can be natural or Human impact on the environment, anthropogenic. Examples of natural aerosols are fog o ...
particles simultaneously absorbs
solar radiation Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m ...
and is nearly transparent to infrared energy from Titan's surface. This acts to reduce solar energy reaching the surface and lets infrared energy escape, cooling Titan's surface. Titan has both a greenhouse and an anti-greenhouse effect which compete with one another. The greenhouse effect warms Titan by 21 K while the anti-greenhouse effect cools Titan by 9 K, so the net warming is 12 K (= 21 K - 9 K). It has been suggested that
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
potentially had a similar haze in the
Archean The Archean Eon ( , also spelled Archaean or Archæan) is the second of four geologic eons of Earth's history, representing the time from . The Archean was preceded by the Hadean Eon and followed by the Proterozoic. The Earth Earth ...
eon, causing an anti-greenhouse effect. It is theorized that this haze helped to regulate and stabilize early Earth's climate. Other atmospheric phenomena besides organic hazes act similarly to the anti-greenhouse effect, such as Earth's stratospheric ozone layer and thermosphere, particles formed and emitted from volcanoes,
nuclear fallout Nuclear fallout is the residual radioactive material propelled into the upper atmosphere following a nuclear blast, so called because it "falls out" of the sky after the explosion and the shock wave has passed. It commonly refers to the radioac ...
, and dust in Mars's upper atmosphere. Outside of the Solar system, calculations of the impact of these hazes on the thermal structure of exoplanets have been conducted.


Energy balance theory


Energy balance

To understand how the anti-greenhouse effect impacts a planet or large moon with its host star as an external source of energy, an
energy budget An energy budget is a balance sheet of energy income against expenditure. It is studied in the field of Energetics which deals with the study of energy transfer and transformation from one form to another. Calorie is the basic unit of measureme ...
can be calculated, similar to how it is done for Earth. For each component in the system, incoming energy needs to equal outgoing energy to uphold the
conservation of energy In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means th ...
and remain at a constant temperature. If one energy contributor is larger than the other, there is an energy imbalance and the temperature of an object will change to reestablish a balance. Energy sources across the whole
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from ...
need to be accounted for when calculating the energy balance. In the case of Earth, for example, a balance is struck between incoming
shortwave radiation Shortwave radiation (SW) is radiant energy with wavelengths in the visible (VIS), near-ultraviolet (UV), and near-infrared (NIR) spectra. There is no standard cut-off for the near-infrared range; therefore, the shortwave radiation range is also v ...
from the Sun and
outgoing longwave radiation Outgoing Long-wave Radiation (OLR) is electromagnetic radiation of wavelengths from 3–100 μm emitted from Earth and its atmosphere out to space in the form of thermal radiation. It is also referred to as up-welling long-wave radiation an ...
from the surface and the atmosphere. After establishing a component's energy balance, a temperature can be derived.


Ideal anti-greenhouse effect

In the most extreme case, suppose that a planet's upper atmosphere contained a haze that absorbed all sunlight which was not reflected back to space, but at the same time was nearly transparent to infrared longwave radiation. By Kirchhoff's law, since the haze is not a good absorber of infrared radiation, the haze will also not be a good emitter of infrared radiation and will emit a small amount in this part of the spectrum both out to space and towards the planet's surface. By the
Stefan–Boltzmann law The Stefan–Boltzmann law describes the power radiated from a black body in terms of its temperature. Specifically, the Stefan–Boltzmann law states that the total energy radiated per unit surface area of a black body across all wavelengths ...
, the planet emits energy directly proportional to the fourth power of surface temperature. At the surface, the energy balance is as follows, \sigma T_^4 = OLR where \sigma is the
Stefan–Boltzmann constant The Stefan–Boltzmann constant (also Stefan's constant), a physical constant denoted by the Greek letter ''σ'' (sigma), is the constant of proportionality in the Stefan–Boltzmann law: "the total intensity radiated over all wavelengths inc ...
, T_ is the surface temperature, and OLR is the outgoing longwave radiation from the haze in the upper atmosphere. Since the haze is not a good absorber of this longwave radiation, it can be assumed to all pass through out to space. The incoming solar energy must be scaled down to account for the amount of energy that is lost by being reflected to space since it is not within the planet-atmosphere system. In the upper atmosphere, the energy balance is as follows, \frac (1-\alpha) \equiv \sigma T_^4 = OLR + \sigma T_^4 where S is the incoming solar energy flux, \alpha is planetary
albedo Albedo (; ) is the measure of the diffuse reflection of sunlight, solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body ...
(i.e., reflectivity), and T_e is the effective mean radiating temperature. The incoming solar flux is divided by four to account for time and spatial averaging over the entire planet and the 1 - \alpha factor is the fraction of the solar energy that is absorbed by the haze. Replacing OLR with \sigmaT_^4 in the second equation, we have, \sigma T_^4 = 2\sigma T_^4 and the ratio T_/T_e equals \left ( 0.5 \right )^4 or 0.84. This means that the surface temperature is reduced from the effective mean radiating temperature by 16%, which is a potentially significant cooling effect. This is an ideal case and represents the maximum impact the anti-greenhouse effect can have and will not be the impact for a real planet or large moon.


On Titan

The organic haze in Titan's stratosphere absorbs 90% of the
solar radiation Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m ...
reaching Titan, but is inefficient at trapping infrared radiation generated by the surface. This is due to Titan's atmospheric window occurring from roughly 16.5 to 25 micrometers. Although a large greenhouse effect does keep Titan at a much higher temperature than the
thermal equilibrium Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
, the anti-greenhouse effect due to the haze reduces the surface temperature by 9 K. Because the greenhouse effect due to other atmospheric components increases it by 21 K, the net effect is that the real surface temperature of Titan (94 K) is 12 K warmer than the
effective temperature The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature ...
82 K (which would be the surface temperature in the absence of any atmosphere, assuming constant
albedo Albedo (; ) is the measure of the diffuse reflection of sunlight, solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body ...
). In the ideal anti-greenhouse case described above, the maximum impact of the organic haze on Titan is (1-0.84) \times 82 K = 13 K. This is higher than the 9 K found on Titan. The organic haze is formed through the
polymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer, monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are ...
of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Eart ...
photolysis Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule. ...
products and
nitrile In organic chemistry, a nitrile is any organic compound that has a functional group. The prefix ''cyano-'' is used interchangeably with the term ''nitrile'' in industrial literature. Nitriles are found in many useful compounds, including met ...
s, meaning the products combine into longer chains and bigger molecules. These methane-derived polymers can be made of
polycyclic aromatic hydrocarbon A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. ...
s (PAHs) and polyacetylene. The distribution of these polymers is not vertically uniform in Titan's atmosphere, however. The nitrile and polyacetylene polymers are formed in the upper atmosphere while the PAH polymers are created in the stratosphere. These polymers then aggregate to form haze particles. The opacity to sunlight of this organic haze on Titan is determined primarily by the haze production rate. If haze production increases, opacity of the haze increases, resulting in more cooling of the surface temperature. Additionally, the presence of this organic haze is the cause of the temperature inversion in Titan's stratosphere.


On Earth

The presence of an organic haze in Earth's
Archean The Archean Eon ( , also spelled Archaean or Archæan) is the second of four geologic eons of Earth's history, representing the time from . The Archean was preceded by the Hadean Eon and followed by the Proterozoic. The Earth Earth ...
atmosphere was first suggested in 1983 and could have been responsible for an anti-greenhouse effect. This hypothesis stems from attempts at resolving the
faint young Sun paradox The faint young Sun paradox or faint young Sun problem describes the apparent contradiction between observations of liquid water early in Earth's history and the astrophysical expectation that the Sun's output would be only 70 percent as intense d ...
, where a reduced solar output in the past must be reconciled with the existence of liquid water on Earth at that time. In order to explain how water could remain in liquid form, it has been proposed that greenhouse gases helped keep Earth warm enough to prevent water from completely freezing. While one hypothesis suggests that only carbon dioxide was responsible for the additional warmth, another hypothesis includes the presence of both carbon dioxide and methane. One model found that methane in the postbiotic Archean could have existed at a
mixing ratio In chemistry and physics, the dimensionless mixing ratio is the abundance of one component of a mixture relative to that of all other components. The term can refer either to mole ratio (see concentration) or mass ratio (see stoichiometry). In at ...
of 1,000 ppm or higher, while the carbon dioxide could be as low as 5,000 ppm to still prevent Earth from freezing over, about 12 times the amount in 2022. However, at this 0.2 ratio of methane to carbon dioxide, products deriving from methane photolysis can polymerize to form long-chain molecules that can aggregate into particles, forming the anti-greenhouse organic haze. The haze is formed when the ratio of methane to
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
exceeds roughly 0.1. It is posited that the organic haze allowed the creation of a
negative feedback loop Negative feedback (or balancing feedback) occurs when some function of the output of a system, process, or mechanism is fed back in a manner that tends to reduce the fluctuations in the output, whether caused by changes in the input or by other ...
to stabilize the climate on Archean Earth. If temperatures increased in Archean Earth, methane production would increase due to methanogens' possible preference for warmer temperatures (see
thermophile A thermophile is an organism—a type of extremophile—that thrives at relatively high temperatures, between . Many thermophiles are archaea, though they can be bacteria or fungi. Thermophilic eubacteria are suggested to have been among the earl ...
s). Increasing temperatures would also increase the carbon dioxide loss through weathering due to an assumed increase in precipitation, leading to decrease carbon dioxide concentrations. This would lead to a higher methane to carbon dioxide ratio and would stimulate the production of the organic haze. This increase in organic haze production would lead to increased opacity of the atmosphere to sunlight, decreased amounts of solar energy reaching the surface, and thus decreases in surface temperature, thus negating the initial increase in surface temperature. One estimation of the anti-greenhouse effect on Archean Earth calculated the impact to be up to about 20 K in surface cooling. In the modern state of Earth's atmosphere, there are a few sources of an anti-greenhouse effect. It has been suggested that stratospheric ozone and Earth's thermosphere create a partial anti-greenhouse effect due to their low thermal opacity and high temperatures. Additionally, ejected dust like that from volcanoes and nuclear fallout after a nuclear war has been suggested to typify an anti-greenhouse effect. Also, the formation of stratospheric sulfur aerosols from volcanic
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic activ ...
emissions has been seen to have a cooling effect on Earth that lasts approximately 1 to 2 years. All of these sources act to create a temperature structure where a hot upper layer lies above a cold surface, which typifies the anti-greenhouse effect. Earlier discussions in the scientific community pre-dating the current definition established by Dr. Christopher McKay in 1991 referred to the anti-greenhouse effect as a precursor to the Late
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the ...
glaciation, describing it more as a
carbon sequestration Carbon sequestration is the process of storing carbon in a carbon pool. Carbon dioxide () is naturally captured from the atmosphere through biological, chemical, and physical processes. These changes can be accelerated through changes in land ...
process. This is no longer the current usage of the term, which emphasizes surface cooling due to high-altitude absorption of solar radiation.


On other planets

There has been discussion about a weak anti-greenhouse effect on Mars, where storms carry dust into the upper atmosphere. Evidence for this effect came from
Viking 1 ''Viking 1'' was the first of two spacecraft, along with ''Viking 2'', each consisting of an orbiter and a lander, sent to Mars as part of NASA's Viking program. The lander touched down on Mars on July 20, 1976, the first successful Mars land ...
measurements made in 1976-77 when in the aftermath of a global storm, the average daytime temperature above the ground dropped by 5 degrees Celsius. Studies using computer simulations have investigated the impact of photochemical hazes on exoplanets' thermal structure. Applying this model to hot Jupiters, scientists found that the inclusion of haze for
HD 189733 b HD 189733 b is an exoplanet approximately away from the Solar System in the constellation of Vulpecula. Astronomers in France discovered the planet orbiting the star HD 189733 on October 5, 2005, by observing its transit across the star's face. ...
led to an expansion of the atmosphere, helping to explain an observed steep transit signature in the electromagnetic spectrum. Also, the model for
HD 209458 b HD 209458 b, which is also nicknamed Osiris after the Egyptian god, is an exoplanet that orbits the solar analog HD 209458 in the constellation Pegasus, some from the Solar System. The radius of the planet's orbit is , or one-eighth the radius o ...
predicted both photochemical haze and objects like clouds.


References

{{DEFAULTSORT:Anti-Greenhouse Effect Planetary atmospheres Atmospheric dynamics