HOME

TheInfoList



OR:

Anaphase () is the stage of
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maximum condensation in late anaphase, to help chromosome segregation and the re-formation of the nucleus. Anaphase starts when the anaphase promoting complex marks an inhibitory chaperone called securin for destruction by ubiquinylating it. Securin is a protein which inhibits a protease known as separase. The destruction of securin unleashes separase which then breaks down cohesin, a protein responsible for holding sister chromatids together. At this point, three subclasses of
microtubule Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27  nm and have an inner diameter between 11 an ...
unique to mitosis are involved in creating the forces necessary to separate the chromatids: kinetochore microtubules, interpolar microtubules, and astral microtubules. The centromeres are split, and the sister chromatids are pulled toward the poles by kinetochore microtubules. They take on a V-shape or Y-shape as they are pulled to either pole. While the chromosomes are drawn to each side of the cell, interpolar microtubules and astral microtubules generate forces that stretch the cell into an oval. Once anaphase is complete, the cell moves into telophase.


Phases

Anaphase is characterized by two distinct motions. The first of these, anaphase A, moves chromosomes to either pole of a dividing cell (marked by centrosomes, from which mitotic microtubules are generated and organised). The movement for this is primarily generated by the action of kinetochores, and a subclass of microtubule called kinetochore microtubules. The second motion, anaphase B, involves the separation of these poles from each other. The movement for this is primarily generated by the action of interpolar microtubules and astral microtubules.


Anaphase A

A combination of different forces have been observed acting on chromatids in anaphase A, but the primary force is exerted centrally. Microtubules attach to the midpoint of chromosomes (the centromere) via protein complexes ( kinetochores). The attached microtubules depolymerise and shorten, which together with motor proteins creates movement that pulls chromosomes towards centrosomes located at each pole of the cell.


Anaphase B

The second part of anaphase is driven by its own distinct mechanisms. Force is generated by several actions. Interpolar microtubules begin at each centrosome and join at the equator of the dividing cell. They push against one another, causing each centrosome to move further apart. Meanwhile, astral microtubules begin at each centrosome and join with the cell membrane. This allows them to pull each centrosome closer to the cell membrane. Movement created by these microtubules is generated by a combination of microtubule growth or shrinking, and by motor proteins such as
dynein Dyneins are a family of cytoskeletal motor proteins that move along microtubules in cells. They convert the chemical energy stored in ATP to mechanical work. Dynein transports various cellular cargos, provides forces and displacements importa ...
s or kinesins.


Relation to the cell cycle

Anaphase accounts for approximately 1% of the cell cycle's duration. It begins with the regulated triggering of the metaphase-to-anaphase transition. Metaphase ends with the destruction of B
cyclin Cyclin is a family of proteins that controls the progression of a cell through the cell cycle by activating cyclin-dependent kinase (CDK) enzymes or group of enzymes required for synthesis of cell cycle. Etymology Cyclins were originally disco ...
. B cyclin is marked with ubiquitin which flags it for destruction by
proteasomes Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are part of a major mechanism by whi ...
, which is required for the function of metaphase cyclin-dependent kinases (M-Cdks). In essence, Activation of the Anaphase-promoting complex (APC) causes the APC to cleave the M-phase cyclin and the inhibitory protein securin which activates the separase protease to cleave the cohesin subunits holding the
chromatids A chromatid (Greek ''khrōmat-'' 'color' + ''-id'') is one half of a duplicated chromosome. Before replication, one chromosome is composed of one DNA molecule. In replication, the DNA molecule is copied, and the two molecules are known as chro ...
together.


See also

* Interphase * Prophase * Prometaphase * Metaphase * Telophase * Cytoskeleton * Anaphase I * Anaphase II * Cdc20


References


External links

* {{Cell cycle Mitosis de:Mitose#Anaphase