Anammox Mechanism 1
   HOME

TheInfoList



OR:

Anammox, an abbreviation for anaerobic ammonium oxidation, is a globally important microbial process of the
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biologi ...
that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction,
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
and
ammonium ion The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
s are converted directly into
diatomic Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. Ot ...
nitrogen and water. The bacteria that perform the anammox process are genera that belong to the bacterial phylum Planctomycetota. The anammox bacteria all possess one anammoxosome, a lipid bilayer membrane-bound compartment inside the cytoplasm in which the anammox process takes place. The anammoxosome membranes are rich in ladderane lipids; the presence of these lipids is so far unique in biology. "Anammox" is also the trademarked name for an anammox-based ammonium removal technology developedJetten Michael Silvester Maria, Van Loosdrecht Marinus Corneli; Technische Universiteit Delft
patent WO9807664
/ref> by the Delft University of Technology.


Process background

In this biological process, which is a
comproportionation Comproportionation or synproportionation is a chemical reaction where two reactants containing the same element but with different oxidation numbers, form a compound having an intermediate oxidation number. It is the opposite of disproportionation. ...
reaction,
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
and
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
ions are converted directly into diatomic nitrogen and water. : + → + . Globally, this process may be responsible for 30–50% of the gas produced in the oceans. It is thus a major sink for fixed nitrogen and so limits oceanic primary productivity. The bacteria that perform the anammox process belong to the bacterial phylum Planctomycetota. Currently, five anammox genera have been discovered: '' Brocadia'', ''Kuenenia'', ''Anammoxoglobus'', ''Jettenia'' (all fresh water species), and '' Scalindua'' (marine species). The anammox bacteria are characterized by several striking properties: * They all possess one anammoxosome, a membrane bound compartment inside the cytoplasm which is the locus of anammox catabolism. Further, the membranes of these bacteria mainly consist of ladderane lipids so far unique in biology. * Of special interest is the conversion to
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
(normally used as a high-energy rocket fuel, and poisonous to most living organisms) as an intermediate. * A final striking feature of the organism is the extremely slow growth rate; the
doubling time The doubling time is the time it takes for a population to double in size/value. It is applied to population growth, inflation, resource extraction, consumption of goods, compound interest, the volume of malignant tumours, and many other things th ...
is anywhere from 7–22 days. The anammox bacteria are geared towards converting their substrates at very low concentrations; in other words, they have a very high affinity to their substrates ammonium and nitrite (sub-micromolar range). Anammox cells are packed with
cytochrome c The cytochrome complex, or cyt ''c'', is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion. It belongs to the cytochrome c family of proteins and plays a major role in cell apoptosis. Cytochrome c is hig ...
type proteins (≈30% of the protein complement), including the enzymes that perform the key catabolic reactions of the anammox process, making the cells remarkably red. The anammox process was originally found to occur only from 20 °C to 43 °C but more recently, anammox has been observed at temperatures from 36 °C to 52 °C in hot springs and 60 °C to 85 °C at hydrothermal vents located along the Mid-Atlantic Ridge.


History

In 1932, it was reported that dinitrogen gas was generated via an unknown mechanism during
fermentation Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food ...
in the sediments of Lake Mendota, Wisconsin, USA. In 1965, F. A. Richards noticed that most of the
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
that should be produced during the anaerobic remineralization of organic matter was unaccounted for. As there was no known biological pathway for this transformation, biological anaerobic oxidation of ammonium received little further attention. In 1977,
Engelbert Broda Engelbert Broda (29 August 1910, in Vienna – 26 October 1983, in Hainburg an der Donau) was an Austrian chemist and physicist suspected by some to have been a KGB spy code-named ''Eric'', who could have been a main Soviet source of information o ...
predicted the existence of two chemolithoautotrophic microorganisms capable of oxidizing ammonium to dinitrogen gas on the basis of thermodynamic calculations. It was thought that anaerobic oxidation of ammonium would not be feasible, assuming that the predecessors had tried and failed to establish a biological basis for those reactions. By the 1990s, Arnold Mulder's observations were just consistent with Richard's suggestion. In their anoxic denitrifying pilot reactor, ammonium disappeared at the expense of
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
with a clear nitrogen production. The reactor used the effluent from a methanogenic pilot reactor, which contained ammonium, sulphide and other compounds, and
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
from a nitrifying plant as the influent. The process was named "anammox," and was realized to have great significance in the removal of unwanted ammonium. The discovery of the anammox process was first publicly presented at the 5th European congress on biotechnology. By the mid-1990s, the discovery of anammox in the fluidized bed reactor was published. A maximum ammonium removal rate of 0.4 kg N/m3/d was achieved. It was shown that for every mole of ammonium consumed, 0.6 mol of nitrate was required, resulting in the formation of 0.8 mol of gas. In 1995 the biological nature of anammox was identified. Labeling experiments with in combination with showed that 14-15 was the dominant product making up 98.2% of the total labeled . It was realized that, instead of nitrate, nitrite was assumed as the oxidizing agent of ammonium in anammox reaction. Based on a previous study, Strous et al. calculated the stoichiometry of anammox process by mass balancing, which is widely accepted by other groups. Later, anammox bacteria were identified as Planctomycetota, and the first identified anammox organism was named '' Candidatus'' "
Brocadia anammoxidans "''Candidatus'' Brocadia" is a ''candidatus'' genus of bacteria. Many of the species in this genus are capable of anammox. Phylogeny Phylogeny based on GTDB 07-RS207 by Genome Taxonomy Database The Genome Taxonomy Database (GTDB) is an onl ...
." Before 2002, anammox was assumed to be a minor player in the
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biologi ...
within natural ecosystems. In 2002 however, anammox was found to play an important part in the biological nitrogen cycle, accounting for 24–67% of the total production in the continental shelf sediments that were studied. The discovery of anammox process modified the concept of biological nitrogen cycle, as depicted in Figure 2.


Possible reaction mechanisms

According to labeling experiments carried out in 1997,
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
is biologically oxidized by hydroxylamine, most likely derived from
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
, as the probable electron acceptor. The conversion of
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
to dinitrogen gas is hypothesized to be the reaction that generates the electron equivalents for the reduction of nitrite to hydroxylamine. In general, two possible reaction mechanisms are addressed: * One mechanism hypothesizes that a membrane-bound enzyme complex converts ammonium and hydroxylamine to hydrazine first, followed by the oxidation of hydrazine to dinitrogen gas in the periplasm. At the same time, nitrite is reduced to hydroxylamine at the cytoplasmic site of the same enzyme complex responsible for hydrazine oxidation with an internal electron transport (Figure 3a). * The other mechanism postulates the following: ammonium and hydroxylamine are converted to hydrazine by a membrane-bound enzyme complex, hydrazine is oxidized in the periplasm to dinitrogen gas, and the generated electrons are transferred via an electron transport chain to nitrite reducing enzyme in the cytoplasm where nitrite is reduced to hydroxylamine (Figure 3b). Whether the reduction of nitrite and the oxidation of hydrazine occur at different sites of the same enzyme or the reactions are catalyzed by different enzyme systems connected via an electron transport chain remains to be investigated. In microbial nitrogen metabolism, the occurrence of hydrazine as an intermediate is rare. Hydrazine has been proposed as an enzyme-bound intermediate in the nitrogenase reaction. Recently, using detailed molecular analyses and combining complementary methods, Kartal and coworkers published strong evidence supporting the latter mechanism. Furthermore, the enzyme producing hydrazine, hydrazine synthase was purified and shown to produce hydrazine from NO and ammonium. The production of hydrazine from ammonium and NO was also supported by the resolution of the crystal structure of the enzyme hydrazine sythase. A possible role of
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its che ...
(NO) or nitroxyl (HNO) in anammox was proposed by Hooper et al. by way of condensation of NO or HNO and ammonium on an enzyme related to the ammonium monooxygenase family. The formed hydrazine or imine could subsequently be converted by the enzyme hydroxylamine oxidase to dinitrogen gas, and the reducing equivalents produced in the reaction are required to combine NO or HNO and ammonium or to reduce nitrite to NO. Environmental genomics analysis of the species ''Candidatus'' '' Kuenenia stuttgartiensis'', through a slightly different and complementary metabolism mechanism, suggested NO to be the intermediate instead of hydroxylamine (Figure 4). However, this hypothesis also agreed that hydrazine was an important intermediate in the process. In this pathway (Figure 4), there are two enzymes unique to anammox bacteria: hydrazine synthase (hzs) and hydrazine dehydrogenase (hdh). The HZS produces hydrazine from nitric oxide and ammonium, and HDH transfer the electrons from hydrazine to
ferredoxin Ferredoxins (from Latin ''ferrum'': iron + redox, often abbreviated "fd") are iron–sulfur proteins that mediate electron transfer in a range of metabolic reactions. The term "ferredoxin" was coined by D.C. Wharton of the DuPont Co. and applied t ...
. Few new genes, such as some known fatty acid biosynthesis and S-adenosylmethionine radical enzyme genes, containing domains involved in electron transfer and catalysis have been detected. Anammox microorganisms can also directly couple NO reduction to ammonia oxidation, without the need for nitrite supply. Another, still unexplored, reaction mechanism involves anaerobic ammonium oxidation on anodes of bio-electrical systems. Such systems can be
microbial fuel cells Microbial fuel cell (MFC) is a type of bioelectrochemical fuel cell system that generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds (also known as fuel or electron donor) on the anode to ox ...
or
microbial electrolysis cell A microbial electrolysis cell (MEC) is a technology related to Microbial fuel cells (MFC). Whilst MFCs produce an electric current from the microbial decomposition of organic compounds, MECs partially reverse the process to generate hydrogen or met ...
s. In the absence of dissolved oxygen, nitrite, or nitrate, microbes living in the anode compartment are able to oxidize ammonium to dinitrogen gas (N2) just as in the classical anammox process. At the same time, they unload the liberated electrons onto the anode, producing electrical current. This electrical current can be used either directly in
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
mode or for hydrogen and methane gas production in
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
mode. While there is no clarity on the reaction mechanism behind, one hypothesis is that
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
,
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
, or
dinitrogen oxide Dinitrogen oxide can potentially refer to any of at least four compounds: * Dinitrogen monoxide (nitrous oxide), N2O; *Dinitrogen dioxide, N2O2; *Dinitrogen trioxide, N2O3; *Dinitrogen tetroxide, N2O4, an unstable dimer of nitric oxide; *Dinitrogen ...
play a role as intermediates. However, since the process occurs at very low
electrochemical potentials In electrochemistry, the electrochemical potential (ECP), ', is a thermodynamic measure of chemical potential that does not omit the energy contribution of electrostatics. Electrochemical potential is expressed in the unit of J/ mol. Introductio ...
, other, more speculative, reaction mechanisms seem possible as well.


Species diversity

Until now, ten anammox species have been described, including seven that are available in laboratory enrichment cultures. All have the taxonomical status of '' Candidatus'', as none were obtained as classical pure cultures. Known species are divided over five genera: # '' Kuenenia'', one species: '' Kuenenia stuttgartiensis''. # '' Brocadia'', three species: '' B. anammoxidans'', '' B. fulgida'', and '' B. sinica''. # ''
Anammoxoglobus '' Candidatus'' Anammoxoglobus propionicus is an anammox (anaerobic ammonium oxidation) bacteria that is taxonomically in the phylum of Planctomycetota. ''Anammoxoglobus propionicus'' is an interest to many researchers due to its ability to r ...
'', one species: '' A. propionicus''. # '' Jettenia'', one species: '' J. asiatica''. # '' Scalindua'', four species: '' S. brodae'', '' S. sorokinii'', '' S. wagneri'', and '' S. profunda.'' Representatives of the first four genera were enriched from sludge from wastewater treatment plants; ''K. stuttgartiensis'', ''B. anammoxidans'', ''B. fulgida'', and ''A. propionicus'' were even obtained from the same inoculum. ''Scalindua'' dominates the marine environment, but is also found in some freshwater ecosystems and wastewater treatment plants. Together, these 10 species likely only represent a minute fraction of anammox biodiversity. For instance, there are currently over 2000 16S rRNA gene sequences affiliated with anammox bacteria that have been deposited to the Genbank (https://www.ncbi.nlm.nih.gov/genbank/), representing an overlooked continuum of species, subspecies, and strains, each apparently having found its specific niche in the wide variety of habitats where anammox bacteria are encountered. Species microdiversity is particularly impressive for the marine representative ''Scalindua''. A question that remains to be investigated is which environmental factors determine species differentiation among anammox bacteria. The sequence identities of the anammox 16S rRNA genes range from 87 to 99%, and phylogenetic analysis places them all within the phylum ''Planctomycetota'', which form the PVC superphylum together with ''Verrucomicrobia'' and ''Chlamydiae''. Within the ''Planctomycetota'', anammox bacteria deeply branch as a monophyletic clade. Their phylogenetic position together with a broad range of specific physiological, cellular, and molecular traits give anammox bacteria their own order ''Brocadiales''.


Application in wastewater treatment

The application of the anammox process lies in the removal of
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
in wastewater treatment and consists of two separate processes. The first step is partial nitrification (nitritation) of half of the ammonium to nitrite by ammonia oxidizing bacteria: :2 + 3 → 2 + 4 + 2 The resulting ammonium and nitrite are converted in the anammox process to dinitrogen gas and ~15% nitrate (not shown) by anammox bacteria: : + → + 2 Both processes can take place in 1 reactor where two guilds of bacteria form compact granules. For the enrichment of the anammox organisms a granular biomass or biofilm system seems to be especially suited in which the necessary sludge age of more than 20 days can be ensured. Possible reactors are sequencing batch reactors (SBR),
moving bed reactor Moving or Movin' may refer to: Moving of goods * Relocation (personal), the process of leaving one dwelling and settling in another * Relocation of professional sports teams * Relocation (computer science) * Structure relocation Music Album ...
s or gas-lift-loop reactors. The cost reduction compared to conventional nitrogen removal is considerable; the technique is still young but proven in several fullscale installations. The first full scale reactor intended for the application of anammox bacteria was built in the Netherlands in 2002. In other wastewater treatment plants, such as the one in Germany (Hattingen), anammox activity is coincidentally observed though were not built for that purpose. As of 2006, there are three full scale processes in The Netherlands: one in a municipal wastewater treatment plant (in Rotterdam), and two on industrial effluent. One is a tannery, the other a potato processing plant.


Advantages

Conventional nitrogen removal from ammonium-rich wastewater is accomplished in two separate steps: nitrification, which is mediated by aerobic ammonia- and nitrite-oxidizing bacteria and denitrification carried out by denitrifiers, which reduce nitrate to with the input of suitable electron donors. Aeration and input of organic substrates (typically methanol) show that these two processes are: # Highly energy consuming. # Associated with the production of excess sludge. # Produce significant amounts of green-house gases such as and and ozone-depleting NO. Because anammox bacteria convert ammonium and nitrite directly to anaerobically, this process does not require aeration and other electron donors. Nevertheless, oxygen is still required for the production of nitrite by ammonia-oxidizing bacteria. However, in partial nitritation/anammox systems, oxygen demand is greatly reduced because only half of the ammonium needs to be oxidized to nitrite instead of full conversion to nitrate. The autotrophic nature of anammox bacteria and ammonia-oxidizing bacteria guarantee a low yield and thus less sludge production. Additionally, anammox bacteria easily form stable self-aggregated biofilm (granules) allowing reliable operation of compact systems characterized by high biomass concentration and conversion rate up to 5–10 kg N m−3. Overall, it has been shown that efficient application of the anammox process in wastewater treatment results in a cost reduction of up to 60% as well as lower emissions.


Disadvantages

The doubling time is slow, between 10 days to 2 weeks.microbewiki: Anammox
/ref> This makes it difficult to grow enough sludge for a wastewater treatment reactor. Also the recovery time after the loss of sludge by accident is longer than in conventional nitrogen removal systems. On the other hand, this slow growing rate is an advantage due to the reduction of surplus sludge that needs to be removed and treated. Depending on the exact species, the optimum pH level is 8. Therefore, it can be necessary to adjust the pH of the wastewater by adding caustic.


References

{{reflist Nitrogen cycle Environmental microbiology