Aluminum-26
   HOME

TheInfoList



OR:

Aluminium-26 (26Al, Al-26) is a
radioactive isotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
of the
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
, decaying by either
positron emission Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron ...
or
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
to stable
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
-26. The
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 26Al is 7.17 (717,000) years. This is far too short for the isotope to survive as a
primordial nuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
, but a small amount of it is produced by collisions of atoms with
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s. Decay of aluminium-26 also produces
gamma rays A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
and
x-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 Picometre, picometers to 10 Nanometre, nanometers, corresponding to frequency, ...
. The x-rays and Auger electrons are emitted by the excited atomic shell of the daughter 26Mg after the electron capture which typically leaves a hole in one of the lower sub-shells. Because it is radioactive, it is typically stored behind at least of lead. Contact with 26Al may result in radiological contamination necessitating special tools for transfer, use, and storage.


Dating

Aluminium-26 can be used to calculate the terrestrial age of
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
s and
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
s. It is produced in significant quantities in extraterrestrial objects via spallation of
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
alongside
beryllium-10 Beryllium-10 (10Be) is a radioactive isotope of beryllium. It is formed in the Earth's atmosphere mainly by cosmic ray spallation of nitrogen and oxygen. Beryllium-10 has a half-life of 1.39 × 106 years, and decays by beta decay to stable boron- ...
, though after falling to Earth, 26Al production ceases and its abundance relative to other
cosmogenic nuclide Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an '' in situ'' Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom ...
s decreases. Absence of aluminium-26 sources on
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
is a consequence of Earth's atmosphere obstructing silicon on the surface and low troposphere from interaction with cosmic rays. Consequently, the amount of 26Al in the sample can be used to calculate the date the meteorite fell to Earth.


Occurrence in the interstellar medium

The gamma ray emission from the decay of Al-26 at 1809 keV was the first observed gamma emission from the galactic center. The observation was made by the
HEAO-3 The last of NASA, NASA's three HEAO Program, High Energy Astronomy Observatories, HEAO 3 was launched 20 September 1979 on an Atlas-Centaur launch vehicle, into a nearly circular, 43.6 degree inclination low Earth orbit with an initial perigeum o ...
satellite in 1984. The isotope is mainly produced in
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
s ejecting many radioactive nuclides in the
interstellar medium In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
. The isotope is believed to provide enough heat to small planetary bodies so as to differentiate their interiors, such as has been the case in the early history of the asteroids
1 Ceres Ceres (; minor-planet designation: 1 Ceres) is a dwarf planet in the asteroid belt between the orbits of Mars and Jupiter. It was the first asteroid discovered, on 1 January 1801, by Giuseppe Piazzi at Palermo Astronomical Observatory in Sici ...
and 4 Vesta. This isotope also features in hypotheses regarding the equatorial bulge of
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
's moon
Iapetus In Greek mythology, Iapetus (; ; grc, Ἰαπετός, Iapetós), also Japetus, is a Titan, the son of Uranus and Gaia and father of Atlas, Prometheus, Epimetheus, and Menoetius. He was also called the father of Buphagus and Anchiale in other ...
.


History

Before 1954, the half-life of aluminium-26 was measured to be 6.3 seconds. After it was theorized that this could be the half-life of a metastable state (
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formulae – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism is existence or possibility of isomers. Iso ...
) of aluminium-26, the ground state was produced by bombardment of
magnesium-26 Magnesium (12Mg) naturally occurs in three stable isotopes: , , and . There are 19 radioisotopes that have been discovered, ranging from to . The longest-lived radioisotope is with a half-life of . The lighter isotopes mostly decay to isotopes o ...
and magnesium-25 with deuterons in the
cyclotron A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Janu ...
of the
University of Pittsburgh The University of Pittsburgh (Pitt) is a public state-related research university in Pittsburgh, Pennsylvania. The university is composed of 17 undergraduate and graduate schools and colleges at its urban Pittsburgh campus, home to the universit ...
. The first half-life was determined to be in the range of 106 years. The Fermi
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
half-life of the aluminium-26 metastable state is of interest in the experimental testing of two components of the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
, namely, the conserved-vector-current hypothesis and the required unitarity of the
Cabibbo–Kobayashi–Maskawa matrix In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix which contains information on the strength of the flavour-changing weak interaction. Technica ...
. The decay is superallowed. The 2011 measurement of the half life of 26mAl is 6346.54 ± 0.46(statistical) ± 0.60(system) milliseconds. In considering the known melting of small planetary bodies in the early Solar System, H. C. Urey noted that the naturally occurring long-lived radioactive nuclei (40K, 238U, 235U and 232Th) were insufficient heat sources. He proposed that the heat sources from short lived nuclei from newly formed stars might be the source and identified 26Al as the most likely choice. This proposal was made well before the general problems of
stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
of the nuclei were known or understood. This conjecture was based on the discovery of 26Al in a Mg target by Simanton, Rightmire, Long & Kohman. Their search was undertaken because hitherto there was no known radioactive isotope of Al that might be useful as a tracer. Theoretical considerations suggested that a state of 26Al should exist. The life time of 26Al was not then known; it was only estimated between 104 and 106 years. The search for 26Al took place over many years, long after the discovery of the
extinct radionuclide An extinct radionuclide is a radionuclide that was formed by nucleosynthesis before the formation of the Solar System, about 4.6 billion years ago, but has since decayed to virtually zero abundance and is no longer detectable as a primordial nuc ...
129I (by Reynolds (1960, ''Physical Review Letters'' v 4, p 8)) which showed that contribution from stellar sources formed ~108 years before the Sun had contributed to the Solar System mix. The asteroidal materials that provide meteorite samples were long known to be from the early Solar System. The
Allende meteorite The Allende meteorite is the largest carbonaceous chondrite ever found on Earth. The fireball was witnessed at 01:05 on February 8, 1969, falling over the Mexican state of Chihuahua. After it broke up in the atmosphere, an extensive search for ...
, which fell in 1969, contained abundant calcium–aluminium-rich inclusions (CAIs). These are very refractory materials and were interpreted as being condensates from a hot
solar nebula The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a ...
. then discovered that the oxygen in these objects was enhanced in 16O by ~5% while the 17O/18O was the same as terrestrial. This clearly showed a large effect in an abundant element that might be nuclear, possibly from a stellar source. These objects were then found to contain strontium with very low 87Sr/86Sr indicating that they were a few million years older than previously analyzed meteoritic material and that this type of material would merit a search for 26Al. 26Al is only present today in the Solar System materials as the result of cosmic reactions on unshielded materials at an extremely low level. Thus, any original 26Al in the early Solar System is now extinct. To establish the presence of 26Al in very ancient materials requires demonstrating that samples must contain clear excesses of 26Mg /24Mg which correlates with the ratio of 27Al/24Mg. The stable 27Al is then a surrogate for extinct 26Al. The different 27Al/24Mg ratios are coupled to different chemical phases in a sample and are the result of normal chemical separation processes associated with the growth of the crystals in the CAIs. Clear evidence of the presence of 26Al at an abundance ratio of 5×10−5 was shown by Lee, et al. The value (26Al/27Al ~ 5) has now been generally established as the high value in early Solar System samples and has been generally used as a refined time scale chronometer for the early Solar System. Lower values imply a more recent time of formation. If this 26Al is the result of pre-solar stellar sources, then this implies a close connection in time between the formation of the Solar System and the production in some exploding star. Many materials which had been presumed to be very early (e.g. chondrules) appear to have formed a few million years later (Hutcheon & Hutchison). Other extinct radioactive nuclei, which clearly had a stellar origin, were then being discovered. That 26Al was present in the interstellar medium as a major
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
source was not explored until the development of the high-energy astronomical observatory program. The HEAO-3 spacecraft with cooled Ge detectors allowed the clear detection of 1.808 Mev gamma lines from the central part of the galaxy from a distributed of 26Al source. This represents a quasi steady state inventory corresponding to two
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es of 26Al was distributed . This discovery was greatly expanded on by observations from the
Compton Gamma Ray Observatory The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting photons with photon energy, energies from 20 kElectronvolt#Properties, eV to 30 GeV, in Earth orbit from 1991 to 2000. The observatory featured four main tele ...
using the COMPTEL telescope in the galaxy. Subsequently, the 60Fe lines (1.173 & 1.333 Mev) were also detected showing the relative rates of decays from 60Fe to 26Al to be 60Fe/26AL~0.11. In pursuit of the carriers of 22Ne in the sludge produced by chemical destruction of some meteorites, carrier grains in micron size, acid-resistant ultra-refractory materials (e.g. C,
SiC The Latin adverb ''sic'' (; "thus", "just as"; in full: , "thus was it written") inserted after a quoted word or passage indicates that the quoted matter has been transcribed or translated exactly as found in the source text, complete with any e ...
) were found by E. Anders & the Chicago group. The carrier grains were clearly shown to be circumstellar condensates from earlier stars and often contained very large enhancements in 26Mg/24Mg from the decay of 26Al with 26Al/27Al sometimes approaching 0.2 These studies on micron scale grains were possible as a result of the development of surface ion mass spectrometry at high mass resolution with a focused beam developed by G. Slodzian & R.Castaing with the CAMECA Co. The production of 26Al by
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
interactions in unshielded materials is used as a monitor of the time of exposure to cosmic rays. The amounts are far below the initial inventory that is found in very early solar system debris.


See also

*
Isotopes of aluminium Aluminium or ''aluminum'' (13Al) has 22 known isotopes from 22Al to 43Al and 4 known isomers. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = ) occur naturally, however 27Al comprises nearly all natural aluminium. Other than 26 ...
* *
Surface exposure dating Surface exposure dating is a collection of geochronological techniques for estimating the length of time that a rock has been exposed at or near Earth's surface. Surface exposure dating is used to date glacial advances and retreats, erosion histo ...


References

{{Authority control Isotopes of aluminium Positron emitters Radionuclides used in radiometric dating