In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Alperin–Brauer–Gorenstein theorem characterizes the finite
simple group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service.
The d ...
s with
quasidihedral or wreathed
[A 2-group is wreathed if it is a nonabelian semidirect product of a ]maximal subgroup
In mathematics, the term maximal subgroup is used to mean slightly different things in different areas of algebra.
In group theory, a maximal subgroup ''H'' of a group ''G'' is a proper subgroup, such that no proper subgroup ''K'' contains ''H'' s ...
that is a direct product of two cyclic group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
s of the same order, that is, if it is the wreath product
In group theory, the wreath product is a special combination of two groups based on the semidirect product. It is formed by the action of one group on many copies of another group, somewhat analogous to exponentiation. Wreath products are used i ...
of a cyclic 2-group with the symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \m ...
on 2 points. Sylow 2-subgroups. These are isomorphic either to three-dimensional
projective special linear group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associat ...
s or
projective special unitary group In mathematics, the projective unitary group is the quotient of the unitary group by the right multiplication of its center, , embedded as scalars.
Abstractly, it is the holomorphic isometry group of complex projective space, just as the projectiv ...
s over a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
of odd order, depending on a certain congruence, or to the
Mathieu group
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 obje ...
. proved this in the course of 261 pages. The subdivision by 2-fusion is sketched there, given as an exercise in , and presented in some detail in .
Notes
References
*
*
*
Theorems about finite groups
{{Abstract-algebra-stub