HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, particularly in
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
, the aleph numbers are a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of numbers used to represent the
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
(or size) of
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set th ...
s that can be
well-ordered In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-orde ...
. They were introduced by the mathematician
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of ...
and are named after the symbol he used to denote them, the
Hebrew Hebrew (; ; ) is a Northwest Semitic language of the Afroasiatic language family. Historically, it is one of the spoken languages of the Israelites and their longest-surviving descendants, the Jews and Samaritans. It was largely preserved ...
letter
aleph Aleph (or alef or alif, transliterated ʾ) is the first letter of the Semitic abjads, including Phoenician , Hebrew , Aramaic , Syriac , Arabic ʾ and North Arabian 𐪑. It also appears as South Arabian 𐩱 and Ge'ez . These letter ...
(\,\aleph\,). The cardinality of the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal n ...
s is \,\aleph_0\, (read ''aleph-nought'' or ''aleph-zero''; the term ''aleph-null'' is also sometimes used), the next larger cardinality of a
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-orde ...
able set is aleph-one \,\aleph_1\;, then \,\aleph_2\, and so on. Continuing in this manner, it is possible to define a
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. Th ...
\,\aleph_\alpha\, for every
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least n ...
\,\alpha\;, as described below. The concept and notation are due to
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of ...
, who defined the notion of cardinality and realized that infinite sets can have different cardinalities. The aleph numbers differ from the
infinity Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...
(\,\infty\,) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
of the
real number line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
(applied to a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
or
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
that " diverges to infinity" or "increases without bound"), or as an extreme point of the
extended real number line In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra ...
.


Aleph-nought

\,\aleph_0\, (aleph-nought, also aleph-zero or aleph-null) is the cardinality of the set of all natural numbers, and is an
infinite cardinal In mathematics, transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to qua ...
. The set of all finite ordinals, called \,\omega\, or \,\omega_\, (where \,\omega\, is the lowercase Greek letter
omega Omega (; capital: Ω, lowercase: ω; Ancient Greek ὦ, later ὦ μέγα, Modern Greek ωμέγα) is the twenty-fourth and final letter in the Greek alphabet. In the Greek numeric system/isopsephy (gematria), it has a value of 800. The wo ...
), has cardinality \,\aleph_0\,. A set has cardinality \,\aleph_0\, if and only if it is
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
, that is, there is a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
(one-to-one correspondence) between it and the natural numbers. Examples of such sets are * the set of all
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s, * any infinite subset of the integers, such as the set of all
square numbers In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals and can be written as . The usua ...
or the set of all
prime numbers A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
, * the set of all
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s, * the set of all
constructible number In geometry and algebra, a real number r is constructible if and only if, given a line segment of unit length, a line segment of length , r, can be constructed with compass and straightedge in a finite number of steps. Equivalently, r is con ...
s (in the geometric sense), * the set of all
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s, * the set of all
computable number In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive ...
s, * the set of all binary
string String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
s of finite length, and * the set of all finite
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s of any given countably infinite set. These infinite ordinals: \,\omega\;, \,\omega+1\;, \,\omega\,\cdot2\,,\, \,\omega^\,, \,\omega^\, and \,\varepsilon_\, are among the countably infinite sets. For example, the sequence (with
ordinality In mathematics, especially in set theory, two ordered sets and are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) f\colon X \to Y such t ...
\,\omega\,\cdot2\,) of all positive odd integers followed by all positive even integers :\,\\, is an ordering of the set (with cardinality \aleph_0) of positive integers. If the
axiom of countable choice The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function ''A'' with domain N (where ...
(a weaker version of the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
) holds, then \,\aleph_0\, is smaller than any other infinite cardinal.


Aleph-one

\,\aleph_1\, is the cardinality of the set of all countable
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least n ...
s, called \,\omega_\, or sometimes \,\Omega\,. This \,\omega_\, is itself an ordinal number larger than all countable ones, so it is an
uncountable set In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal numb ...
. Therefore, \,\aleph_1\, is distinct from \,\aleph_0\,. The definition of \,\aleph_1\, implies (in ZF,
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as ...
''without'' the axiom of choice) that no cardinal number is between \,\aleph_0\, and \,\aleph_1\,. If the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
is used, it can be further proved that the class of cardinal numbers is
totally ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive) ...
, and thus \,\aleph_1\, is the second-smallest infinite cardinal number. Using the axiom of choice, one can show one of the most useful properties of the set \,\omega_\,: any countable subset of \,\omega_\, has an upper bound in \,\omega_\,. (This follows from the fact that the union of a countable number of countable sets is itself countable – one of the most common applications of the axiom of choice.) This fact is analogous to the situation in \,\aleph_0\; : every finite set of natural numbers has a maximum which is also a natural number, and
finite unions In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of ze ...
of finite sets are finite. \,\omega_~is actually a useful concept, if somewhat exotic-sounding. An example application is "closing" with respect to countable operations; e.g., trying to explicitly describe the σ-algebra generated by an arbitrary collection of subsets (see e.g.
Borel hierarchy In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called ...
). This is harder than most explicit descriptions of "generation" in algebra (
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s,
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
s, etc.) because in those cases we only have to close with respect to finite operations – sums, products, and the like. The process involves defining, for each countable ordinal, via
transfinite induction Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for a ...
, a set by "throwing in" all possible countable unions and complements, and taking the union of all that over all of \, \omega_.


Continuum hypothesis

The
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of the set of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s (
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathb ...
) is \, 2^ ~. It cannot be determined from ZFC (
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as ...
augmented with the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
) where this number fits exactly in the aleph number hierarchy, but it follows from ZFC that the continuum hypothesis, CH, is equivalent to the identity : 2^ = \aleph_1. The CH states that there is no set whose cardinality is strictly between that of the integers and the real numbers. CH is independent of ZFC: it can be neither proven nor disproven within the context of that axiom system (provided that ZFC is
consistent In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent i ...
). That CH is consistent with ZFC was demonstrated by
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
in 1940, when he showed that its negation is not a theorem of ZFC. That it is independent of ZFC was demonstrated by
Paul Cohen Paul Joseph Cohen (April 2, 1934 – March 23, 2007) was an American mathematician. He is best known for his proofs that the continuum hypothesis and the axiom of choice are independent from Zermelo–Fraenkel set theory, for which he was award ...
in 1963, when he showed conversely that the CH itself is not a theorem of ZFC – by the (then-novel) method of forcing.


Aleph-omega

Aleph-omega is :\aleph_\omega = \sup \, \ = \sup \, \~ where the smallest infinite ordinal is denoted . That is, the cardinal number \,\aleph_\omega\, is the
least upper bound In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest low ...
of : \left\ ~. \,\aleph_\omega is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory ''not'' to be equal to the cardinality of the set of all
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s; for any positive integer ''n'' we can consistently assume that \,2^ = \aleph_n~, and moreover it is possible to assume \,2^\, is as large as we like. We are only forced to avoid setting it to certain special cardinals with
cofinality In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. This definition of cofinality relies on the axiom of choice, as it uses the ...
\, \aleph_0 ~ , meaning there is an unbounded function from \, \aleph_0 \, to it (see
Easton's theorem In set theory, Easton's theorem is a result on the possible cardinal numbers of powersets. (extending a result of Robert M. Solovay) showed via forcing that the only constraints on permissible values for 2''κ'' when ''κ'' is a regular cardina ...
).


Aleph-α for general α

To define \,\aleph_\alpha\, for arbitrary ordinal number \,\alpha~, we must define the successor cardinal operation, which assigns to any cardinal number \,\rho\, the next larger
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-orde ...
ed cardinal \,\rho^\, (if the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
holds, this is the next larger cardinal). We can then define the aleph numbers as follows: :\aleph_ = \omega :\aleph_ = \aleph_^+ ~ and for , an infinite
limit ordinal In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ...
, :\aleph_ = \bigcup_ \aleph_\beta ~. The α-th infinite
initial ordinal In a written or published work, an initial capital, also referred to as a drop capital or simply an initial cap, initial, initcapital, initcap or init or a drop cap or drop, is a letter at the beginning of a word, a chapter, or a paragraph that ...
is written \omega_\alpha. Its cardinality is written \,\aleph_\alpha~. In ZFC, the aleph function \,\aleph\, is a bijection from the ordinals to the infinite cardinals.


Fixed points of omega

For any ordinal α we have :\alpha \leq \omega_\alpha ~. In many cases \omega_ is strictly greater than . For example, for any successor ordinal α this holds. There are, however, some limit ordinals which are fixed points of the omega function, because of the
fixed-point lemma for normal functions The fixed-point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908. Background and for ...
. The first such is the limit of the sequence :\omega, \, \omega_\omega, \, \omega_, \, \ldots ~. Any
weakly inaccessible cardinal In set theory, an uncountable set, uncountable cardinal number, cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal is strongly inaccessible if it is ...
is also a fixed point of the aleph function. This can be shown in ZFC as follows. Suppose \,\kappa = \aleph_\lambda\, is a weakly inaccessible cardinal. If \lambda were a
successor ordinal In set theory, the successor of an ordinal number ''α'' is the smallest ordinal number greater than ''α''. An ordinal number that is a successor is called a successor ordinal. Properties Every ordinal other than 0 is either a successor ordin ...
, then \,\aleph_\lambda\, would be a
successor cardinal In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case th ...
and hence not weakly inaccessible. If \,\lambda\, were a
limit ordinal In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ...
less than \,\kappa~, then its
cofinality In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. This definition of cofinality relies on the axiom of choice, as it uses the ...
(and thus the cofinality of \aleph_\lambda) would be less than \,\kappa\, and so \,\kappa\, would not be regular and thus not weakly inaccessible. Thus \,\lambda \geq \kappa\, and consequently \,\lambda = \kappa\, which makes it a fixed point.


Role of axiom of choice

The cardinality of any infinite
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least n ...
is an aleph number. Every aleph is the cardinality of some ordinal. The least of these is its
initial ordinal In a written or published work, an initial capital, also referred to as a drop capital or simply an initial cap, initial, initcapital, initcap or init or a drop cap or drop, is a letter at the beginning of a word, a chapter, or a paragraph that ...
. Any set whose cardinality is an aleph is
equinumerous In mathematics, two sets or classes ''A'' and ''B'' are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', ther ...
with an ordinal and is thus
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-orde ...
able. Each
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. Th ...
is well-orderable, but does not have an aleph as its cardinality. The assumption that the cardinality of each
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set th ...
is an aleph number is equivalent over ZF to the existence of a well-ordering of every set, which in turn is equivalent to the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
. ZFC set theory, which includes the axiom of choice, implies that every infinite set has an aleph number as its cardinality (i.e. is equinumerous with its initial ordinal), and thus the initial ordinals of the aleph numbers serve as a class of representatives for all possible infinite cardinal numbers. When cardinality is studied in ZF without the axiom of choice, it is no longer possible to prove that each infinite set has some aleph number as its cardinality; the sets whose cardinality is an aleph number are exactly the infinite sets that can be well-ordered. The method of
Scott's trick In set theory, Scott's trick is a method for giving a definition of equivalence classes for equivalence relations on a proper class (Jech 2003:65) by referring to levels of the cumulative hierarchy. The method relies on the axiom of regularity but ...
is sometimes used as an alternative way to construct representatives for cardinal numbers in the setting of ZF. For example, one can define to be the set of sets with the same cardinality as of minimum possible rank. This has the property that if and only if and have the same cardinality. (The set does not have the same cardinality of in general, but all its elements do.)


See also

*
Beth number In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written \beth_0,\ \beth_1,\ \beth_2,\ \beth_3,\ \dots, where \beth is the second H ...
*
Gimel function In axiomatic set theory, the gimel function is the following function mapping cardinal numbers to cardinal numbers: :\gimel\colon\kappa\mapsto\kappa^ where cf denotes the cofinality function; the gimel function is used for studying the continuum f ...
*
Regular cardinal In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite ...
*
Transfinite number In mathematics, transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to qua ...
*
Ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least n ...


Notes


Citations


External links

* * {{DEFAULTSORT:Aleph Number Cardinal numbers Hebrew alphabet Infinity