HOME

TheInfoList



OR:

The African superswell is a region including the Southern and Eastern African plateaus and the Southeastern Atlantic basin where exceptional
tectonic uplift Tectonic uplift is the geologic uplift of Earth's surface that is attributed to plate tectonics. While isostatic response is important, an increase in the mean elevation of a region can only occur in response to tectonic processes of crustal th ...
has occurred, resulting in
terrain Terrain or relief (also topographical relief) involves the vertical and horizontal dimensions of land surface. The term bathymetry is used to describe underwater relief, while hypsometry studies terrain relative to sea level. The Latin wo ...
much higher than its surroundings. The average elevation of
craton A craton (, , or ; from grc-gre, κράτος "strength") is an old and stable part of the continental lithosphere, which consists of Earth's two topmost layers, the crust and the uppermost mantle. Having often survived cycles of merging an ...
s is about 400–500 meters above sea level. Southern Africa exceeds these elevations by more than 500 m, and stands at over 1 km above
sea level Mean sea level (MSL, often shortened to sea level) is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datuma standardise ...
. The Southern and Eastern African plateaus show similar uplift histories, allowing them to be considered as one
topographic Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the land forms and features themselves, or a description or depiction in maps. Topography is a field of geoscience and planetary scien ...
unit. When considered this way, the swell is one of the largest topographic anomalies observed on any continent, and spans an area of over 10 million km2. Uplift extends beyond the continents into the Atlantic Ocean, where extremely shallow ocean depths are visible through
bathymetric Bathymetry (; ) is the study of underwater depth of ocean floors (''seabed topography''), lake floors, or river floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The first recorded evidence of water d ...
survey. The region can indeed be considered as one large swell because the bathymetric anomaly to the southwest of Africa is on the same order as the topographic anomaly of the plateaus (approximately 500 m). The superswell is a relatively recent phenomenon, probably beginning between 5 and 30 million years ago.


Proposed mechanisms

Various theories have been proposed as to the cause of the superswell. The main debate comes from whether the region of high topography is being supported by thermal isostatic mechanisms or dynamically.


Lithospheric heating

Heating of the lithosphere, and the associated increase in
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the ...
, is one possible mechanism proposed for the large degrees of uplift of the African superswell. Evidence of extensive
volcanism Volcanism, vulcanism or volcanicity is the phenomenon of eruption of molten rock (magma) onto the surface of the Earth or a solid-surface planet or moon, where lava, pyroclastics, and volcanic gases erupt through a break in the surface called a ...
and
rifting In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics. Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-graben wi ...
in eastern Africa during the Cenozoic supports the idea that lithospheric heating was occurring during the time of uplift. Heat flow anomalies must be considered in order to justify lithospheric heating as a possible elevation mechanism in southern Africa. When comparing heat flow measurements in southern Africa mobile belts to average global heat flow values, a positive anomaly is observed. This anomaly may not be attributed to shallow, crustal heat generation, as the mobile belts have differing tectonic histories. Deeper sources of heat generation in the lithosphere can thus be considered as an explanation for heat flow anomalies. Heating of the lithosphere may also be explained by movement of southern Africa over several hotspots, which now exist beneath the oceanic portion of the superswell. The region of mantle beneath the African superswell would have been insulated by the supercontinent Pangea in the late
Paleozoic The Paleozoic (or Palaeozoic) Era is the earliest of three geologic eras of the Phanerozoic Eon. The name ''Paleozoic'' ( ;) was coined by the British geologist Adam Sedgwick in 1838 by combining the Greek words ''palaiós'' (, "old") and ' ...
and
Mesozoic The Mesozoic Era ( ), also called the Age of Reptiles, the Age of Conifers, and colloquially as the Age of the Dinosaurs is the second-to-last era of Earth's geological history, lasting from about , comprising the Triassic, Jurassic and Cretace ...
, providing a final observation supporting elevated temperature conditions as a mechanism for uplift.


Dynamic topography

One possible explanation for the immense uplift of Africa causing the superswell is
dynamic topography The term dynamic topography is used in geodynamics to refer the elevation differences caused by the flow within Earth's mantle. Definition In geodynamics, ''dynamic topography'' refers to topography generated by the motion of zones of differing ...
. This phenomenon describes changes in the topography of the surface of the Earth due to circulation of the underlying mantle. In the case of dynamic topography, the uplift in Africa would be supported by flow from the lower mantle. A deep, low-velocity anomaly under the uplifted region can be seen in tomographic surveys and has been interpreted as a low-density anomaly coming from the deepest region of the mantle. By predicting the region's topographic response to the low-density anomaly using dynamic topography calculations, an almost perfect model of the elevated topography of the superswell is achieved. This provides evidence that, in fact, dynamic response to mantle circulation is likely the cause of the superswell.


References

{{Reflist Geology of Africa