HOME

TheInfoList



OR:

In
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
, of special interest are
involution Involution may refer to: Mathematics * Involution (mathematics), a function that is its own inverse * Involution algebra, a *-algebra: a type of algebraic structure * Involute, a construction in the differential geometry of curves * Exponentiati ...
s which are
linear In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a '' function'' (or '' mapping''); * linearity of a '' polynomial''. An example of a linear function is the function defined by f(x) ...
or
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, '' affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More general ...
s over the
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
Such involutions are easy to characterize and they can be described geometrically.


Linear involutions

To give a linear involution is the same as giving an
involutory matrix In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix \bold A_ is an involution if and only if \bold A^2 = \bold I, where \bold I is the n \times n identity matrix. Involutory matri ...
, a
square matrix In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Squ ...
such that \bold A^2 = \bold I \quad\quad\quad\quad (1) where is the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
. It is a quick check that a square matrix whose elements are all zero off the main diagonal and ±1 on the diagonal, that is, a signature matrix of the form \bold D = \begin \pm 1 & 0 & \cdots & 0 & 0 \\ 0 & \pm 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \pm 1 & 0 \\ 0 & 0 & \cdots & 0 & \pm 1 \end satisfies (1), i.e. is the matrix of a linear involution. It turns out that all the matrices satisfying (1) are of the form \bold A = \bold U^ \bold, where is invertible and is as above. That is to say, the matrix of any linear involution is of the form
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
a
matrix similarity In linear algebra, two ''n''-by-''n'' matrices and are called similar if there exists an invertible ''n''-by-''n'' matrix such that B = P^ A P . Similar matrices represent the same linear map under two possibly different bases, with being th ...
. Geometrically this means that any linear involution can be obtained by taking
oblique reflection In Euclidean geometry, oblique reflections generalize ordinary reflections by not requiring that reflection be done using perpendiculars. If two points are oblique reflections of each other, they will still stay so under affine transformations. ...
s against any number from 0 through
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
s going through the origin. (The term ''oblique reflection'' as used here includes ordinary reflections.) One can easily verify that represents a linear involution if and only if has the form \bold A = \pm (2 \bold P - \bold I) for a linear
projection Projection or projections may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphics, and carto ...
.


Affine involutions

If ''A'' represents a linear involution, then ''x''→''A''(''x''−''b'')+''b'' is an
affine Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a Affinity_(law)#Terminology, relative by marriage in law and anthropology * Affine cipher, a special case of the more general substi ...
involution. One can check that any affine involution in fact has this form. Geometrically this means that any affine involution can be obtained by taking oblique reflections against any number from 0 through ''n'' hyperplanes going through a point ''b''. Affine involutions can be categorized by the dimension of the
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
of fixed points; this corresponds to the number of values 1 on the diagonal of the similar matrix ''D'' (see above), i.e., the dimension of the eigenspace for
eigenvalue In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
1. The affine involutions in 3D are: * the identity * the oblique reflection in respect to a plane * the oblique reflection in respect to a line * the reflection in respect to a point.


Isometric involutions

In the case that the eigenspace for eigenvalue 1 is the
orthogonal complement In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W^\perp of all vectors in V that are orthogonal to every vector in W. I ...
of that for eigenvalue −1, i.e., every eigenvector with eigenvalue 1 is
orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
to every eigenvector with eigenvalue −1, such an affine involution is an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
. The two extreme cases for which this always applies are the
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
and
inversion in a point In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or ...
. The other involutive isometries are inversion in a line (in 2D, 3D, and up; this is in 2D a reflection, and in 3D a
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
about the line by 180°), inversion in a plane (in 3D and up; in 3D this is a reflection in a plane), inversion in a 3D space (in 3D: the identity), etc.


References

{{DEFAULTSORT:Affine Involution Affine geometry