Adenosine Triphosphoric Acid
   HOME

TheInfoList



OR:

Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in
metabolic Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
processes, it converts either to
adenosine diphosphate Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbon ...
(ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP. The
human body The human body is the structure of a Human, human being. It is composed of many different types of Cell (biology), cells that together create Tissue (biology), tissues and subsequently organ systems. They ensure homeostasis and the life, viabi ...
recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
, and is used as a coenzyme. From the perspective of biochemistry, ATP is classified as a
nucleoside triphosphate A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are cha ...
, which indicates that it consists of three components: a nitrogenous base ( adenine), the sugar ribose, and the
triphosphate Polyphosphates are salts or esters of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. Polyphosphates can adopt linear or a cyclic ring structures. In biology, the polyphosphate e ...
.


Structure

ATP consists of an adenine attached by the 9-nitrogen atom to the 1′ carbon atom of a sugar ( ribose), which in turn is attached at the 5' carbon atom of the sugar to a triphosphate group. In its many reactions related to metabolism, the adenine and sugar groups remain unchanged, but the triphosphate is converted to di- and monophosphate, giving respectively the derivatives
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Air ...
and AMP. The three phosphoryl groups are labeled as alpha (α), beta (β), and, for the terminal phosphate, gamma (γ). In neutral solution, ionized ATP exists mostly as ATP4−, with a small proportion of ATP3−.


Binding of metal cations to ATP

Being polyanionic and featuring a potentially chelating polyphosphate group, ATP binds metal cations with high affinity. The binding constant for is (). The binding of a divalent
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
, almost always magnesium, strongly affects the interaction of ATP with various proteins. Due to the strength of the ATP-Mg2+ interaction, ATP exists in the cell mostly as a complex with bonded to the phosphate oxygen centers. A second magnesium ion is critical for ATP binding in the kinase domain. The presence of Mg2+ regulates kinase activity.


Chemical properties

Salts of ATP can be isolated as colorless solids. ATP is stable in aqueous solutions between pH 6.8 and 7.4, in the absence of catalysts. At more extreme pHs, it rapidly hydrolyses to
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Air ...
and phosphate. Living cells maintain the ratio of ATP to ADP at a point ten orders of magnitude from equilibrium, with ATP concentrations fivefold higher than the concentration of ADP. In the context of biochemical reactions, the P-O-P bonds are frequently referred to as ''high-energy bonds''.


Reactive aspects

The hydrolysis of ATP into ADP and inorganic phosphate releases 20.5 
kJ/mol The joule per mole (symbol: J·mol−1 or J/mol) is the unit of energy per amount of substance in the International System of Units (SI), such that energy is measured in joules, and the amount of substance is measured in moles. It is also an SI ...
of enthalpy. The values of the free energy released by cleaving either a phosphate (Pi) or a pyrophosphate (PPi) unit from ATP at
standard state In chemistry, the standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions. A superscript circle ° (degree symbol) or a Plimsoll (⦵) character is use ...
concentrations of 1 mol/L at pH 7 are: :ATP + → ADP + Pi Δ''G''°' = −30.5 kJ/mol (−7.3 kcal/mol) :ATP + → AMP + PPi Δ''G''°' = −45.6 kJ/mol (−10.9 kcal/mol) These abbreviated equations at a pH near 7 can be written more explicitly (R =
adenosyl Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9- glycosidic bond. Adenosine is one of the four nucleoside building ...
): : O-P(O)2-O-P(O)2-O-PO3sup>4− + → O-P(O)2-O-PO3sup>3− + PO4sup>2− + H+ : O-P(O)2-O-P(O)2-O-PO3sup>4− + → O-PO3sup>2− + O3P-O-PO3sup>3− + H+ At cytoplasmic conditions, where the ADP/ATP ratio is 10 orders of magnitude from equilibrium, the Δ''G'' is around −57 kJ/mol.


Production from AMP and ADP


Production, aerobic conditions

A typical intracellular concentration of ATP is hard to pin down, however, reports have shown there to be 1–10 μmol per gram of tissue in a variety of eukaryotes. The dephosphorylation of ATP and rephosphorylation of ADP and AMP occur repeatedly in the course of aerobic metabolism. ATP can be produced by a number of distinct cellular processes; the three main pathways in
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
s are (1)
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
, (2) the citric acid cycle/
oxidative phosphorylation Oxidative phosphorylation (UK , US ) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine tri ...
, and (3)
beta-oxidation In biochemistry and metabolism, beta-oxidation is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citric acid cycle, ...
. The overall process of oxidizing glucose to carbon dioxide, the combination of pathways 1 and 2, known as cellular respiration, produces about 30 equivalents of ATP from each molecule of glucose. ATP production by a non-
photosynthetic Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in c ...
aerobic eukaryote occurs mainly in the
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
, which comprise nearly 25% of the volume of a typical cell.


Glycolysis

In glycolysis, glucose and glycerol are metabolized to
pyruvate Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic aci ...
. Glycolysis generates two equivalents of ATP through substrate phosphorylation catalyzed by two enzymes, PGK and pyruvate kinase. Two equivalents of NADH are also produced, which can be oxidized via the
electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
and result in the generation of additional ATP by
ATP synthase ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
. The pyruvate generated as an end-product of glycolysis is a substrate for the Krebs Cycle. Glycolysis is viewed as consisting of two phases with five steps each. In phase 1, "the preparatory phase", glucose is converted to 2 d-glyceraldehyde-3-phosphate (g3p). One ATP is invested in Step 1, and another ATP is invested in Step 3. Steps 1 and 3 of glycolysis are referred to as "Priming Steps". In Phase 2, two equivalents of g3p are converted to two pyruvates. In Step 7, two ATP are produced. Also, in Step 10, two further equivalents of ATP are produced. In Steps 7 and 10, ATP is generated from ADP. A net of two ATPs is formed in the glycolysis cycle. The glycolysis pathway is later associated with the Citric Acid Cycle which produces additional equivalents of ATP.


=Regulation

= In glycolysis, hexokinase is directly inhibited by its product, glucose-6-phosphate, and pyruvate kinase is inhibited by ATP itself. The main control point for the glycolytic pathway is phosphofructokinase (PFK), which is allosterically inhibited by high concentrations of ATP and activated by high concentrations of AMP. The inhibition of PFK by ATP is unusual since ATP is also a substrate in the reaction catalyzed by PFK; the active form of the enzyme is a tetramer that exists in two conformations, only one of which binds the second substrate fructose-6-phosphate (F6P). The protein has two binding sites for ATP – the
active site In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate (binding site) a ...
is accessible in either protein conformation, but ATP binding to the inhibitor site stabilizes the conformation that binds F6P poorly. A number of other small molecules can compensate for the ATP-induced shift in equilibrium conformation and reactivate PFK, including cyclic AMP,
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
ions, inorganic phosphate, and fructose-1,6- and -2,6-biphosphate.


Citric acid cycle

In the
mitochondrion A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
, pyruvate is oxidized by the
pyruvate dehydrogenase complex Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and t ...
to the
acetyl In organic chemistry, acetyl is a functional group with the chemical formula and the structure . It is sometimes represented by the symbol Ac (not to be confused with the element actinium). In IUPAC nomenclature, acetyl is called ethanoyl, ...
group, which is fully oxidized to carbon dioxide by the citric acid cycle (also known as the Krebs cycle). Every "turn" of the citric acid cycle produces two molecules of carbon dioxide, one equivalent of ATP guanosine triphosphate (GTP) through
substrate-level phosphorylation Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP by the transfer of a phosphate group from a substrate directly to ADP or GDP. Transferring from a higher energy (whether phosphate group atta ...
catalyzed by
succinyl-CoA synthetase Succinyl-coenzyme A, abbreviated as succinyl-CoA () or SucCoA, is a thioester of succinic acid and coenzyme A. Sources It is an important intermediate in the citric acid cycle, where it is synthesized from α-ketoglutarate by α-ketoglutarate de ...
, as succinyl-CoA is converted to succinate, three equivalents of NADH, and one equivalent of FADH2. NADH and FADH2 are recycled (to NAD+ and
FAD A fad or trend is any form of collective behavior that develops within a culture, a generation or social group in which a group of people enthusiastically follow an impulse for a short period. Fads are objects or behaviors that achieve short- ...
, respectively) by
oxidative phosphorylation Oxidative phosphorylation (UK , US ) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine tri ...
, generating additional ATP. The oxidation of NADH results in the synthesis of 2–3 equivalents of ATP, and the oxidation of one FADH2 yields between 1–2 equivalents of ATP. The majority of cellular ATP is generated by this process. Although the citric acid cycle itself does not involve molecular oxygen, it is an obligately aerobic process because O2 is used to recycle the NADH and FADH2. In the absence of oxygen, the citric acid cycle ceases. The generation of ATP by the mitochondrion from cytosolic NADH relies on the
malate-aspartate shuttle The malate-aspartate shuttle (sometimes simply the malate shuttle) is a biochemical system for translocating electrons produced during glycolysis across the semipermeable inner membrane of the mitochondrion for oxidative phosphorylation in eukaryo ...
(and to a lesser extent, the
glycerol-phosphate shuttle The glycerol-3-phosphate shuttle is a mechanism that regenerates NAD+ from NADH, a by-product of glycolysis. The shuttle consists of the sequential activity of two proteins: GPD1 which transfers an electron pair from NADH to dihydroxyacetone phosph ...
) because the inner mitochondrial membrane is impermeable to NADH and NAD+. Instead of transferring the generated NADH, a malate dehydrogenase enzyme converts oxaloacetate to malate, which is translocated to the mitochondrial matrix. Another malate dehydrogenase-catalyzed reaction occurs in the opposite direction, producing oxaloacetate and NADH from the newly transported malate and the mitochondrion's interior store of NAD+. A transaminase converts the oxaloacetate to
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
for transport back across the membrane and into the intermembrane space. In oxidative phosphorylation, the passage of electrons from NADH and FADH2 through the electron transport chain releases the energy to pump
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s out of the mitochondrial matrix and into the intermembrane space. This pumping generates a proton motive force that is the net effect of a pH gradient and an electric potential gradient across the inner mitochondrial membrane. Flow of protons down this potential gradient – that is, from the intermembrane space to the matrix – yields ATP by
ATP synthase ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
. Three ATP are produced per turn. Although oxygen consumption appears fundamental for the maintenance of the proton motive force, in the event of oxygen shortage (
hypoxia Hypoxia means a lower than normal level of oxygen, and may refer to: Reduced or insufficient oxygen * Hypoxia (environmental), abnormally low oxygen content of the specific environment * Hypoxia (medical), abnormally low level of oxygen in the tis ...
), intracellular acidosis (mediated by enhanced glycolytic rates and ATP hydrolysis), contributes to mitochondrial membrane potential and directly drives ATP synthesis. Most of the ATP synthesized in the mitochondria will be used for cellular processes in the cytosol; thus it must be exported from its site of synthesis in the mitochondrial matrix. ATP outward movement is favored by the membrane's electrochemical potential because the cytosol has a relatively positive charge compared to the relatively negative matrix. For every ATP transported out, it costs 1 H+. Producing one ATP costs about 3 H+. Therefore, making and exporting one ATP requires 4H+. The inner membrane contains an
antiporter An antiporter (also called exchanger or counter-transporter) is a cotransporter and integral membrane protein involved in secondary active transport of two or more different molecules or ions across a phospholipid membrane such as the plasma memb ...
, the
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Air ...
/ATP translocase, which is an integral membrane protein used to exchange newly synthesized ATP in the matrix for
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Air ...
in the intermembrane space. This translocase is driven by the membrane potential, as it results in the movement of about 4 negative charges out across the mitochondrial membrane in exchange for 3 negative charges moved inside. However, it is also necessary to transport phosphate into the mitochondrion; the phosphate carrier moves a proton in with each phosphate, partially dissipating the proton gradient. After completing glycolysis, the citric acid cycle, the electron transport chain, and oxidative phosphorylation, approximately 30–38 ATP molecules are produced per glucose.


=Regulation

= The citric acid cycle is regulated mainly by the availability of key substrates, particularly the ratio of NAD+ to NADH and the concentrations of calcium, inorganic phosphate, ATP,
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Air ...
, and AMP. Citrate – the ion that gives its name to the cycle – is a feedback inhibitor of citrate synthase and also inhibits PFK, providing a direct link between the regulation of the citric acid cycle and glycolysis.


Beta oxidation

In the presence of air and various cofactors and enzymes, fatty acids are converted to
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for ...
. The pathway is called
beta-oxidation In biochemistry and metabolism, beta-oxidation is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citric acid cycle, ...
. Each cycle of beta-oxidation shortens the fatty acid chain by two carbon atoms and produces one equivalent each of acetyl-CoA, NADH, and FADH2. The acetyl-CoA is metabolized by the citric acid cycle to generate ATP, while the NADH and FADH2 are used by oxidative phosphorylation to generate ATP. Dozens of ATP equivalents are generated by the beta-oxidation of a single long acyl chain.


=Regulation

= In oxidative phosphorylation, the key control point is the reaction catalyzed by cytochrome c oxidase, which is regulated by the availability of its substrate – the reduced form of
cytochrome c The cytochrome complex, or cyt ''c'', is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion. It belongs to the cytochrome c family of proteins and plays a major role in cell apoptosis. Cytochrome c is hig ...
. The amount of reduced cytochrome c available is directly related to the amounts of other substrates: : \frac12 \ce + \ce\ \ce + \ce + \ce \rightleftharpoons \frac12 \ce + \ce\ \ce + \ce which directly implies this equation: : \frac = \left(\frac\right)^\left(\frac\right)K_\mathrm Thus, a high ratio of ADHto AD+or a high ratio of DPPi] to TPimply a high amount of reduced cytochrome c and a high level of cytochrome c oxidase activity. An additional level of regulation is introduced by the transport rates of ATP and NADH between the mitochondrial matrix and the cytoplasm.


Ketosis

Ketone bodies can be used as fuels, yielding 22 ATP and 2 GTP molecules per acetoacetate molecule when oxidized in the mitochondria. Ketone bodies are transported from the liver to other tissues, where
acetoacetate Acetoacetic acid (also acetoacetate and diacetic acid) is the organic compound with the formula CHCOCHCOOH. It is the simplest beta-keto acid, and like other members of this class, it is unstable. The methyl and ethyl esters, which are quite stab ...
and ''beta''-hydroxybutyrate can be reconverted to
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for ...
to produce reducing equivalents (NADH and FADH2), via the citric acid cycle. Ketone bodies cannot be used as fuel by the liver, because the liver lacks the enzyme β-ketoacyl-CoA transferase, also called thiolase.
Acetoacetate Acetoacetic acid (also acetoacetate and diacetic acid) is the organic compound with the formula CHCOCHCOOH. It is the simplest beta-keto acid, and like other members of this class, it is unstable. The methyl and ethyl esters, which are quite stab ...
in low concentrations is taken up by the liver and undergoes detoxification through the methylglyoxal pathway which ends with lactate.
Acetoacetate Acetoacetic acid (also acetoacetate and diacetic acid) is the organic compound with the formula CHCOCHCOOH. It is the simplest beta-keto acid, and like other members of this class, it is unstable. The methyl and ethyl esters, which are quite stab ...
in high concentrations is absorbed by cells other than those in the liver and enters a different pathway via
1,2-propanediol Propylene glycol (IUPAC name: propane-1,2-diol) is a viscous, colorless liquid, which is nearly odorless but possesses a faintly sweet taste. Its chemical formula is CH3CH(OH)CH2OH. Containing two alcohol groups, it is classed as a diol. It is ...
. Though the pathway follows a different series of steps requiring ATP, 1,2-propanediol can be turned into pyruvate.


Production, anaerobic conditions

Fermentation Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food ...
is the metabolism of organic compounds in the absence of air. It involves
substrate-level phosphorylation Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP by the transfer of a phosphate group from a substrate directly to ADP or GDP. Transferring from a higher energy (whether phosphate group atta ...
in the absence of a respiratory
electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
. The equation for the reaction of glucose to form lactic acid is: : + 2 ADP + 2 Pi → 2  + 2 ATP + 2  Anaerobic respiration is respiration in the absence of . Prokaryotes can utilize a variety of electron acceptors. These include
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
, sulfate, and carbon dioxide.


ATP replenishment by nucleoside diphosphate kinases

ATP can also be synthesized through several so-called "replenishment" reactions catalyzed by the enzyme families of
nucleoside diphosphate kinase Nucleoside-diphosphate kinases (NDPKs, also NDP kinase, (poly)nucleotide kinases and nucleoside diphosphokinases) are enzymes that catalyze the exchange of terminal phosphate between different nucleoside diphosphates (NDP) and triphosphates (NTP) ...
s (NDKs), which use other nucleoside triphosphates as a high-energy phosphate donor, and the ATP:guanido-phosphotransferase family.


ATP production during photosynthesis

In plants, ATP is synthesized in the thylakoid membrane of the
chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
. The process is called photophosphorylation. The "machinery" is similar to that in mitochondria except that light energy is used to pump protons across a membrane to produce a proton-motive force. ATP synthase then ensues exactly as in oxidative phosphorylation. Some of the ATP produced in the chloroplasts is consumed in the
Calvin cycle The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into ...
, which produces
triose A triose is a monosaccharide, or simple sugar, containing three carbon atoms. There are only three possible trioses (including dihydroxyacetone): L-glyceraldehyde and D-glyceraldehyde, the two enantiomers of glyceraldehyde, which are aldotriose ...
sugars.


ATP recycling

The total quantity of ATP in the human body is about 0.1  mol/L. The majority of ATP is recycled from
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Air ...
by the aforementioned processes. Thus, at any given time, the total amount of ATP +
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Air ...
remains fairly constant. The energy used by human cells in an adult requires the hydrolysis of 100 to 150 mol/L of ATP daily, which means a human will typically use their body weight worth of ATP over the course of the day. Each equivalent of ATP is recycled 1000–1500 times during a single day (), at approximately 9×1020 molecules/s.


Biochemical functions


Intracellular signaling

ATP is involved in
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
by serving as substrate for kinases, enzymes that transfer phosphate groups. Kinases are the most common ATP-binding proteins. They share a small number of common folds.
Phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
of a protein by a kinase can activate a cascade such as the
mitogen-activated protein kinase A mitogen-activated protein kinase (MAPK or MAP kinase) is a type of protein kinase that is specific to the amino acids serine and threonine (i.e., a serine/threonine-specific protein kinase). MAPKs are involved in directing cellular responses to ...
cascade. ATP is also a substrate of adenylate cyclase, most commonly in G protein-coupled receptor signal transduction pathways and is transformed to
second messenger Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form or cell signaling, encompassing both first me ...
, cyclic AMP, which is involved in triggering calcium signals by the release of calcium from intracellular stores. This form of signal transduction is particularly important in brain function, although it is involved in the regulation of a multitude of other cellular processes.


DNA and RNA synthesis

ATP is one of four monomers required in the synthesis of
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
. The process is promoted by
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens the ...
s. A similar process occurs in the formation of DNA, except that ATP is first converted to the
deoxyribonucleotide A deoxyribonucleotide is a nucleotide that contains deoxyribose. They are the monomeric units of the informational biopolymer, deoxyribonucleic acid ( DNA). Each deoxyribonucleotide comprises three parts: a deoxyribose sugar (monosaccharide), a ni ...
dATP. Like many condensation reactions in nature, DNA replication and DNA transcription also consume ATP.


Amino acid activation in protein synthesis

Aminoacyl-tRNA synthetase enzymes consume ATP in the attachment tRNA to amino acids, forming aminoacyl-tRNA complexes. Aminoacyl transferase binds AMP-amino acid to tRNA. The coupling reaction proceeds in two steps: # aa + ATP ⟶ aa-AMP + PPi # aa-AMP + tRNA ⟶ aa-tRNA + AMP The amino acid is coupled to the penultimate nucleotide at the 3′-end of the tRNA (the A in the sequence CCA) via an ester bond (roll over in illustration).


ATP binding cassette transporter

Transporting chemicals out of a cell against a gradient is often associated with ATP hydrolysis. Transport is mediated by ATP binding cassette transporters. The human genome encodes 48 ABC transporters, that are used for exporting drugs, lipids, and other compounds.


Extracellular signalling and neurotransmission

Cells secrete ATP to communicate with other cells in a process called purinergic signalling. ATP serves as a
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
in many parts of the nervous system, modulates ciliary beating, affects vascular oxygen supply etc. ATP is either secreted directly across the cell membrane through channel proteins or is pumped into vesicles which then
fuse Fuse or FUSE may refer to: Devices * Fuse (electrical), a device used in electrical systems to protect against excessive current ** Fuse (automotive), a class of fuses for vehicles * Fuse (hydraulic), a device used in hydraulic systems to protect ...
with the membrane. Cells detect ATP using the
purinergic receptor Purinergic receptors, also known as purinoceptors, are a family of plasma membrane molecules that are found in almost all mammalian tissues. Within the field of purinergic signalling, these receptors have been implicated in learning and memory, lo ...
proteins P2X and P2Y.


Protein solubility

ATP has recently been proposed to act as a biological
hydrotrope A hydrotrope is a compound that solubilizes hydrophobic compounds in aqueous solutions by means other than micellar solubilization. Typically, hydrotropes consist of a hydrophilic part and a hydrophobic part (similar to surfactants), but the hydro ...
and has been shown to affect proteome-wide solubility.


ATP analogues

Biochemistry laboratories often use '' in vitro'' studies to explore ATP-dependent molecular processes. ATP analogs are also used in X-ray crystallography to determine a protein structure in complex with ATP, often together with other substrates. Enzyme inhibitors of ATP-dependent enzymes such as
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
s are needed to examine the binding sites and transition states involved in ATP-dependent reactions. Most useful ATP analogs cannot be hydrolyzed as ATP would be; instead, they trap the enzyme in a structure closely related to the ATP-bound state. Adenosine 5′-(γ-thiotriphosphate) is an extremely common ATP analog in which one of the gamma-phosphate oxygens is replaced by a
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
atom; this anion is hydrolyzed at a dramatically slower rate than ATP itself and functions as an inhibitor of ATP-dependent processes. In crystallographic studies, hydrolysis transition states are modeled by the bound vanadate ion. Caution is warranted in interpreting the results of experiments using ATP analogs, since some enzymes can hydrolyze them at appreciable rates at high concentration.


Medical use

ATP is used intravenously for some heart related conditions.


History

ATP was discovered in 1929 by Karl Lohmann and Jendrassik and, independently, by Cyrus Fiske and
Yellapragada Subba Rao Yellapragada Subba Rao (12 January 1895 – 8 August 1948) was a pioneering Indian biochemist who discovered the function of adenosine triphosphate (ATP) as an energy source in the cell, developed methotrexate for the treatment of cancer a ...
of Harvard Medical School, both teams competing against each other to find an assay for phosphorus. It was proposed to be the intermediary between energy-yielding and energy-requiring reactions in cells by
Fritz Albert Lipmann Fritz Albert Lipmann (; June 12, 1899 – July 24, 1986) was a German-American biochemist and a co-discoverer in 1945 of coenzyme A. For this, together with other research on coenzyme A, he was awarded the Nobel Prize in Physiology or Medicine in ...
in 1941. It was first synthesized in the laboratory by Alexander Todd in 1948, and he was awarded the Nobel Prize in Chemistry in 1957 partly for this work. The 1978 Nobel Prize in Chemistry was awarded to Dr. Peter Dennis Mitchell for the discovery of the chemiosmotic mechanism of ATP synthesis. The Nobel Prize in Chemistry 1997 was divided, one half jointly to
Paul D. Boyer Paul Delos Boyer (July 31, 1918 – June 2, 2018) was an American biochemist, analytical chemist, and a professor of chemistry at University of California Los Angeles (UCLA). He shared the 1997 Nobel Prize in Chemistry for research on the " enzy ...
and
John E. Walker Sir John Ernest Walker One or more of the preceding sentences incorporates text from the royalsociety.org website where: (born 7 January 1941) is a British chemist who won the Nobel Prize in Chemistry in 1997. Walker is Emeritus Director an ...
"for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)" and the other half to Jens C. Skou "for the first discovery of an ion-transporting enzyme, Na+, K+ -ATPase."


See also

*
Adenosine diphosphate Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbon ...
(ADP) * Adenosine monophosphate (AMP) *
Adenosine-tetraphosphatase In enzymology, an adenosine-tetraphosphatase () is an enzyme that catalyzes the chemical reaction :adenosine 5'-tetraphosphate + H2O \rightleftharpoons ATP + phosphate Thus, the two substrates of this enzyme are adenosine 5'-tetraphosphate a ...
* Adenosine methylene triphosphate * ATPases *
ATP test The ATP test is a process of rapidly measuring actively growing microorganisms through detection of adenosine triphosphate, or ATP. Method ATP is a molecule found in and around living cells, and as such it gives a direct measure of biological c ...
* ATP hydrolysis *
ATP synthase ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). It is classified under ligases as it changes ADP by the formation ...
* Citric acid cycle (also called the Krebs cycle or TCA cycle) * Creatine * Cyclic adenosine monophosphate (cAMP) *
Nucleotide exchange factor Nucleotide exchange factors (NEFs) are proteins that stimulate the exchange (replacement) of nucleoside diphosphates for nucleoside triphosphates bound to other proteins. Function Many cellular proteins cleave (hydrolyze) nucleoside triphosphates ...
* Phosphagen * Photophosphorylation


References


External links


ATP bound to proteins
in the PDB
ScienceAid: Energy ATP and Exercise

PubChem entry for Adenosine Triphosphate

KEGG entry for Adenosine Triphosphate
{{DEFAULTSORT:Adenosine phosphate3 Adenosine receptor agonists Cellular respiration Coenzymes Ergogenic aids Exercise physiology Neurotransmitters Nucleotides Phosphate esters Purinergic signalling Purines Substances discovered in the 1920s