HOME

TheInfoList



OR:

Actin remodeling is a biochemical process in cells. In the
actin remodeling Actin remodeling is the biochemical process that allows for the dynamic alterations of cellular organization. The remodeling of actin filaments occurs in a cyclic pattern on cell surfaces and exists as a fundamental aspect to cellular life. Durin ...
of neurons, the
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
actin is part of the process to change the shape and structure of
dendritic spine A dendritic spine (or spine) is a small membranous protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical s ...
s.
G-actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over ...
is the
monomer In chemistry, a monomer ( ; '' mono-'', "one" + ''-mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization. Classification ...
form of
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ov ...
, and is uniformly distributed throughout the
axon An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action p ...
and the
dendrite Dendrites (from Greek δένδρον ''déndron'', "tree"), also dendrons, are branched protoplasmic extensions of a nerve cell that propagate the electrochemical stimulation received from other neural cells to the cell body, or soma, of the ...
.
F-actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ov ...
is the
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
form of actin, and its presence in dendritic spines is associated with their change in shape and structure. Actin plays a role in the formation of new spines as well as stabilizing spine volume increase. The changes that actin brings about lead to the formation of new synapses as well as increased cell communication. Actin remodeling consists of the dynamic changes in actin
polymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many fo ...
that underlie the morphological changes at the neural synapse. Actin is only able to cause all of the changes that promote
long-term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons ...
(LTP) through its formation from G-actin into F-actin. When F-actin is unable to form,
long-term depression In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depen ...
(LTD) is induced, which promotes opposite results. Stimulation of the neuron that promotes LTP causes larger spine volume, increased cell communication, and a greater ratio of F-actin to G-actin. In the LTD environment, spine volume is decreased, cell communication is decreased, and there is a far greater ratio of G-actin to F-actin.


Structural overview of actin

Actin exists in two states in the axonal and dendritic processes: globular or G-actin and filament/filamentous or F-actin. G-actin are the monomer building blocks that assemble via weak noncovalent interactions to form F-actin. F-actin is a two-stranded asymmetrical helical polymer. The asymmetrical quality of F-actin allows for different binding specificities at each end. One end shows an indentation and is referred to as the barbed end while the other resembles an arrow head and is referred to as the pointed end. F-actin can be found in the presynaptic bouton surrounding synaptic vesicle clusters and acting as scaffolding. Additionally, actin is present at the active zone and plays a role in moving vesicles to the active zone for exocytosis into the synapse. The active zone is the portion of the presynaptic membrane opposite the postsynaptic density across the synaptic cleft. It is the site of synaptic vesicle docking and neurotransmitter release. Postsynaptically, F-actin can be found in the postsynaptic density zone (PSDZ) and throughout the spine head and neck. G-actin is uniformly distributed throughout the axon and the dendrite.Dillon, C., Goda, Y. (2005). The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci., 28: 25-55. The balance of F and G-actin is in a constant state of flux, which can be attributed to actin treadmilling. Actin treadmilling is the process of turnover of actin filaments where F-actin is rapidly assembled and disassembled. G-actin subunits preferentially add to the barbed end of the F-actin polymer and older units are removed from the pointed end. The concentration of free G-actin monomers decreases until it reaches a critical concentration where the rate of assembly to disassembly or the F to G-actin ratio reaches a steady state.


Role in short-term synaptic communication

Non-LTP inducing stimuli cause alterations in spine morphology due to changes in actin polymerization. Presynaptically, axonal boutons undergo submicron displacements that indent the dendritic spines.Colicos MA, Collins BE, Sailor MJ, Goda Y. 2001. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107:605–16 Postsynaptically, innervation causes dendritic spines to remodel by as much as 30% over a period of seconds. The spines show a lateral expansion that envelops the presynaptic axonal indentation. The changes due to non-LTP inducing stimuli dissipate after 5 minutes.


Role in LTP and LTD

Actin is necessary for the induction of LTP. This protein allows for many changes both presynaptically and postsynaptically. In the presynaptic region, actin allows for the formation of new axonal branches that result in new boutons. It also facilitates vesicle recruitment to the bouton. Postsynaptically, actin filaments traffic
AMPA receptors The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (also known as AMPA receptor, AMPAR, or quisqualate receptor) is an ionotropic transmembrane receptor for glutamate (iGluR) that mediates fast synaptic transmission in the centr ...
to the PSDZ, while also providing scaffolding for plasticity products such as
CAMKII /calmodulin-dependent protein kinase II (CaM kinase II or CaMKII) is a serine/threonine-specific protein kinase that is regulated by the /calmodulin complex. CaMKII is involved in many signaling cascades and is thought to be an important mediator ...
. F-actin could serve as a synaptic tag because the scaffolding space for plasticity products is increased during LTP actin polymerization. Furthermore, the actin
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is com ...
in the neck of the spine compartmentalizes the LTP induced response to the innervated dendritic spine, which leads to the specificity of LTP.Meng, Y., Zhang, Y., Tregoubov, V., Janus, C., Cruz, I., et al. (2002). Abnormal spine morphology and enhanced LTP in LIMK1 knockout mice. Neuron, 35:121-133. Actin plays a role in the formation of new spines as well as stabilized spine volume increase. All of these changes that actin brings about leads to the formation of new synapses as well as increased cell communication. LTP inducing high frequency stimulation leads to NMDA receptor activation and calcium influx.
Rho GTPases Rho GTPase may refer to: *Any member of the Rho family of GTPases *The members of the Rho family of GTPases belonging to the '' Rho subclass'' *RHOA Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase ...
are then activated to polymerize G-actin to F-actin through the activity of actin binding proteins. An increase in the F-actin/G-actin ratio is observed 40 seconds after the LTP inducing stimulus.Okamato, K. I., Nagai, T., Miyawaki, A., Hayashi, Y. (2004) Rapid and persistent modulation of actin dynamics regulates post-synaptic reorganization underlying bi-directional plasticity. Nature Neuroscience, 7:1104-1112. The increase in polymerized F-actin is due to the recruitment of G-actin monomers and the translation of actin
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
in the dendrite. The stimulus induced change persists for approximately 5 weeks.Fukazawa, Y., Saitoh, Y., Ozawa, F., Ohta, Y., Mizuno, K., Inokochi, K. (2003). Hippocampal LTP is accompanied by enhanced f-actin content within dendritic spine that is essential for late LTP maintenance in vivo. Neuron, 38:447-460. Actin is only able to cause changes that promote LTP through its formation into F-actin. When F-actin is unable to form, LTD is induced, which promotes opposite results. ''This figure demonstrates the morphological effects on the dendrites in LTP and LTD environments. In LTP we can see the larger spine volume as well as a greater ratio of F-actin to G-actin. This demonstrates the role of actin in LTP as well as the increased communication LTP creates. In the LTD environment, spine volume is decreased and there is a far greater ratio of G-actin to F-actin, demonstrating the importance of the F-actin to G-actin ratios in both LTP and LTD.''


Actin binding proteins in LTP and LTD

Actin binding proteins prove significant in actin remodeling, as the LIMK1/ADF/Cofilin Pathway facilitates the development of F-actin. Actin Depolymerizing Factor, or ADF, normally disassembles actin and hampers the induction of LTP. However, synaptic activity favors the activation of
LIMK1 LIM domain kinase 1 is an enzyme that in humans is encoded by the ''LIMK1'' gene. Function There are approximately 40 known eukaryotic LIM proteins, so named for the LIM domains they contain. LIM domains are highly conserved cysteine-rich struc ...
, a protein that phosphorylates the ADF/Cofilin complex at its phosphorylation site, Ser3, which inactivates the complex, promoting the formation of F-actin. If this pathway is disrupted, then G-actin is unable to polymerize and LTP is inhibited. One particular actin binding protein that plays a major role in disrupting this pathway is
Gelsolin Gelsolin is an actin-binding protein that is a key regulator of actin filament assembly and disassembly. Gelsolin is one of the most potent members of the actin-severing gelsolin/ villin superfamily, as it severs with nearly 100% efficiency. Cell ...
. This protein caps the barbed end of F-actin, thus preventing G-actin subunits from binding to F-actin and blocking actin treadmilling. Activation of Gelsolin not only blocks LTP, but induces LTD. In LTD, the F to G-actin ratio is shifted towards G-actin and leads to a decrease in spine volume, as well as the occasional disappearance of spines altogether.


Implications for learning and memory

Being associated with long term structural changes at the synapse and LTP, it is no surprise that actin dynamics influence learning and memory. Experiments have shown that drugs like cytochalasin C and
Latrunculin The latrunculins are a family of natural products and toxins produced by certain sponges, including genus '' Latrunculia'' and ''Negombata'', whence the name is derived. It binds actin monomers near the nucleotide binding cleft with 1:1 stoichiome ...
A that inhibit the assembly of G-actin into F-actin disrupt both the acquisition and extinction of fear responses in mice.Fischer, A., Sananbnesi, F., Schrick, C., Spiess, J., Radulovic, J. (2004). Distinct roles of hippocampul de novo protein synthesis and actin rearrangement in extinction of contextual fear. Journal of Neuroscience, 24:1962-1966. Disruption of actin dynamics can also affect visuospatial learning. LIMK1, an actin binding protein,
phosphorylates In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, whi ...
ADF/cofilin, allowing the formation of F-actin. LIMK1 knockout neurons are unable to form a cytoskeletal matrix within the dendritic spine, which has interesting implications for learning. One of the primary functions of actin is to compartmentalize a neuron's response to stimulation – that is, to keep molecules essential for LTP within the stimulated spine. Upon low frequency stimulation of knockout cells, these molecules are likely to diffuse out of the cell before a concentration significant enough to produce LTP builds up. Upon high frequency stimulation, however, there is an overabundance of these essential molecules, which are present in high enough concentrations to produce LTP not only at the stimulated spine but at the adjacent spines into which they diffuse as a result of a lack of compartmentalization. The result is an overall increase in potentiation. In humans, many heritable disorders characterized by mental retardation are linked to mutations in genes important to the actin polymerization pathway.
Williams syndrome Williams syndrome (WS) is a genetic disorder that affects many parts of the body. Facial features frequently include a broad forehead, underdeveloped chin, short nose, and full cheeks. Mild to moderate intellectual disability is observed in people ...
,
fragile X Fragile X syndrome (FXS) is a genetic disorder characterized by mild-to-moderate intellectual disability. The average IQ in males with FXS is under 55, while about two thirds of affected females are intellectually disabled. Physical features may ...
, fetal alcohol syndrome, and
Patau syndrome Patau syndrome is a syndrome caused by a chromosomal abnormality, in which some or all of the cells of the body contain extra genetic material from chromosome 13. The extra genetic material disrupts normal development, causing multiple and comp ...
have all been linked to these genes.Chechlacz M, Gleeson JG. 2003. Is mental retardation a defect of synapse structure and function? Pediatr. Neurol. 29:11–17 Neurons from people affected by these disorders show minimal dendritic arborization and underdeveloped spine structure, similar to neurons in animal models of molecular defects in actin polymerization.


References

Cellular neuroscience